• Title/Summary/Keyword: Pitch angle

Search Result 698, Processing Time 0.02 seconds

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

Development of a Self Balancing Electric Wheelbarrow (자기 균형 기능이 있는 외발 전동 손수레 개발)

  • Lee, Myung-Sub;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • In this paper, a new type of electric wheelbarrow is proposed and developed. The developed electric wheelbarrow is equipped with an attitude reference system(ARS) sensor, which consists of 3-axis acceleration sensor and 2-axis Gyro sensor so that it can estimate pitch angle and roll angle. When an operator tilts the wheelbarrow up and down, the pitch angle is detected. The sign of the pitch angle is interpreted as the operator's intention for moving the wheelbarrow forward or backward and the controller drives the wheel of the wheelbarrow with the velocity according to the magnitude of the detected pitch angle. A cargo box of the wheelbarrow is designed to rotate and is controlled to maintain level always, so an operator can handle the electric wheelbarrow easily and safely. The wheelbarrow consists of an in-wheel motor, a DC motor, motor drives, an ARS sensor considering economical use in industrial field. Three experiments are performed to verify the feasibility and stability of the electric wheelbarrow.

The Kalman Filter Design for the Transfer Alignment by Euler Angle Matching (오일러각 정합방식의 전달정렬 칼만필터 설계)

  • Song, Ki-Won;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1044-1050
    • /
    • 2001
  • This paper presents firstly the method of Euler angle matching designing the transfer alignment using the attitude matching. In this method, the observation directly uses Euler angle difference between MINS and SINS so it needs to describe the rotation vector error to the Euler angle error. The rotation vector error related to the Euler angle error is derive from the direction cosine matrix error equation. The feasibility of the Kalman filter designed for the transfer alignment by Euler angle matching is analyzed by the alignment error results with respect to the roll angle the pitch angle, and the yaw angle matching.

  • PDF

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.

Design of Elliptical Lobe Type Gear with Involute Profile (타원계 엽형기어의 설계 및 동특성에 관한 연구)

  • 유명섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.7-14
    • /
    • 1998
  • Noncircular gears have been used for obtaining the modified anglualr velocity ratio between parallel axes. The elliptical gear, which is a kind of noncircular gears, makes use of ellipse as a pitch curve, and is applied for the measurement of the discharge of liquid. The applications of an elliptical gear are more advantageous than any other mechanism as like a crank-slider linkage or a cam mechanism in view of the accuracy and the reliability to transmit the prescribed motion. In this paper, acceding to the theoretical involute tooth profile, two pairs of the elliptical gears were manufactured by using CNC wire electronic discharge machine. The proper ranges of the operating pressure angle and of module not to generate under cutting are studied on the change of the eccentricity, because it is the eccentricity of the pitch curve that determines most of the characteristics of the elliptical gear and then the vibration analysis is executed for the verification of harmonious rotating.

  • PDF

Analysis of the Interaction Between Side Jet and Supersonic Free Stream Using K-factor (상호 작용 계수를 이용한 측추력 제트와 초음속 자유류 상호 작용에 관한 연구)

  • Kim, Min-Gyu;Lee, Kwang-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 2012
  • The side jet effects between jet flow and free-stream on a missile body were investigated by experimentally and numerically for modeling aerodynamic coefficients in pitch plane. K-factors for normal force and pitching moment were introduced to estimate the side jet effects. The main parameters of the jet interaction phenomena were angle of attack, jet pressure ratio, Mach number and jet bank angle. The K-factors for normal force coefficient and pitching moment coefficients in pitch plane were analysed.

화학기계적 연마 가공에서의 윤활 특성 해석

  • 박상신;조철호;안유민
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.272-277
    • /
    • 1998
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer(work piece) and pad(tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

  • PDF

Analysis of the Lubricational Characteristics for Chemical-Mechanical Polishing Process (화학기계적 연마 가공에서의 윤활 특성 해석)

  • 박상신;조철호;안유민
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.90-97
    • /
    • 1999
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CU process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer (work piece) and pad (tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

Design of A Tire-Attachable Cage Wheel for Wetland Use (I)-Study on design parameters of a cage wheel- (트랙터용 습지 보조 차륜의 설계(I)-케이지 휠의 설계 변수에 관한 연구)

  • 오영근;류일훈;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.79-88
    • /
    • 2000
  • Effects on tractive performance of design parameters of cage wheel as a traction aid to driving tires of tractor in wet paddy field were investigated experimentally. an experimental cage wheel was designed so that the design parameters such as wheel diameter, wheel width, lug pitch and lug angle could be varied during traction test, The traction test was conducted in two different types of wet paddy field ; shallow and deep harpan fields . Experimental results showed that tractive performance is affected by both soil conditions and the design parameters. A considerable improvement on the tractive performance was obtained by using a cage wheel with 45$^{\circ}$ lug angle in shallow hardpan and smaller lug pitch in deep hardpan. The diameter of cage wheel was mostly influential to the tractive performance both in shallow and deep hardpans.

  • PDF

Optimization of Round Bar Forging Process by Using Finite Element Analysis (유한요소해석을 이용한 환봉 단조공정 최적화)

  • 최성기;천명식;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.142-147
    • /
    • 2004
  • Three-dimensional rigid-plastic finite element analysis has been performed to optimize open die forging process to make round bar. In the round bar forging, it is difficult to optimize process parameters in the operational environments. Therefore in this study, finite element method is used to analyze the practice of open die forging, focusing on the effects of reduction, feeding pitch and rotation angle for optimal forging pass designs. The soundness of forging process has been estimated by the smoothness and roundness of the bar at various combination of feeding pitches and rotation angles. From the test result, process conditions to make round bar having precise dimensional accuracy have been proposed.