• Title/Summary/Keyword: Pitch and Bounce of a Vehicle

Search Result 6, Processing Time 0.022 seconds

Evaluation of Ride Quality Sensitivity on Vehicle Dynamic Behavior Using a Small Scale Simulator (소형 시뮬레이터를 이용한 차량거동요소별 승차감 민감도 평가)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Mun, Hyungchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.97-106
    • /
    • 2017
  • PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS : Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from "very satisfied"to "very dissatisfied."Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS :In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS : This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

A Study for behavior mode frequency of railway vehicle using ramp device (Ramp장치를 이용한 철도차량 거동모드 주파수에 관한 연구)

  • Yang, Hee-Joo;Woo, Kwan-Je;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.30-35
    • /
    • 2010
  • The railway vehicle is a multi-body system running on the track which consists of carbody, bogie and wheelset, each of components is connected with rigid mass, spring and damper. each of components has translation motions of longitudinal (X axis), lateral(Y axis) and vertical(Z axis) direction, and rotation motions of X, Y, Z axis which are named Rolling, Pitching and Yawing. The vibration mode of railway vehicle is difficult to find the characteristics of motion during the operation on the track because these happen to independence or duplication motion caused by vehicle, wheel/rail and track irregularity etc. This paper presents the result of ramp test to show the bounce, roll, pitch and yaw mode frequency of the railway vehicle.

  • PDF

Development of Start Feel Index of a Forklift Truck (지게차 출발감각 평가지수 개발)

  • Jang, Han-Gi;Guk, Du-Yun;Lee, Jong-Gyu;Choe, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • In this paper the start fuel index was developed to estimate ride quality of a forklift truck during the start motion. Through the consultation with test drivers, definition of start feel was made, and three parameters were selected to describe the start motion. They are engagement shock in the forwarding direction, vertical and pitch vibration respectively. To find out the relation between the measured motion and the subjective fueling, both the subjective rating and the measurement of vehicle motions were performed simultaneously. The correlation analysis between the two kinds of results showed start fuel was expressed by the measured accelerations with accuracy and reliability, Use of the new index has advantages of not only evaluating start fuel only by the measured signals but providing the consistent results which are not affected by physical and mental state of a test driver. Usefulness of the new index was confirmed by verification test on four new forklift trucks of a same model, which showed the order of preference by the index was coincided that by subjective evaluation.

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로 하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-590
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) and presented in time domain.