• Title/Summary/Keyword: Piston ring

Search Result 140, Processing Time 0.025 seconds

A Basic Study on Piston-Ring Pack (피스톤-링 팩에 관한 기초 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • A piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston-ring pack do an important role in the performance and fuel economy of an engine. In fact, the friction loss in piston-ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston-ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston-ring pack has to be carried out. In this study, for the efficient design of piston-ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

Analysis for Lubrication of the Piston Ring Considering Oil Transport (오일이송을 고려한 피스톤 링의 윤활 해석)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 1998
  • This paper considers analysis of the lubrication between the piston ring and the cylinder liner. Piston ring lubrication analysis considering oil transport is important because oil consumption is an essential factor to design the piston assembly. To develop the lubrication analysis program for the piston ring, oil continuity condition and open-end boundary assumption are used for computational boundaries. Results show that oil continuity can be almost satisfied at any crank angle in and out of the piston ring clearance. Therefore the amount of oil consumption and the dynamic behavior of ring pack can be estimated using this algorithm. And it can be known that the effective width may be smaller than the full width of the piston ring, so oil starvation condition should be considered for the lubrication analysis of the piston ring.

Eviction Characteristics of Piston Assembly (I) -Theory- (피스톤계 마찰 특성 (I) -이론적 연구-)

  • Cho, Myung-Rae;Ha, Kyoung-Pyo;Kim, Joong-Soo;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2003
  • The aim of this paper is to investigate the friction characteristics of piston assembly. The friction of piston assembly is composed of ring pack and skirt friction. In this paper, the theoretical models of piston ring pack and piston skirt were presented. The mixed lubrication theory was considered to calculate friction force of piston ring and skirt. from the results, most of friction in piston assembly occurred at the piston ring park. The piston assembly usually showed hydrodynamic lubrication characteristics. but the top and bottom dead centers showed mixed lubrication characteristics. The piston skirt was much affected by radial clearance and load, but ring was significantly influenced by ring tension.

An Experimental Study on Frictional Characteristics of the Piston Ring (피스톤 링 마찰 특성의 실험적 연구)

  • Lee, Jae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.115-122
    • /
    • 1999
  • A friction tester to measure friction force generated at the interface between the piston ring and the cylinder liner was developed. Modified piston ring is bar-shaped and 100mm long. Surface of the modified piston ring is machined by the profile grinding machine to be formed as a shape of an arc of a circle. Measured data are treated as mean effective friction force and power loss. From this test it can be confirmed that friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is decreased and power loss is increased with increasing velocity. And it is known that region of mixed lubrication is broader than estimated with theoretical analysis. it is expected that this tester can be used as the optimization tool of the surface shape of the piston ring at the first stage of development of the piston rings.

  • PDF

Development of a Basic Program for the Study of Piston-Ring Pack (피스톤-링 팩 연구를 위한 기초 프로그램 개발)

  • Chun Sang Myung;Ha Dae-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.149-157
    • /
    • 2004
  • A Piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston ring pack do an important role in the performance and fuel economy of an engine. in fact, the friction loss in piston ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston ring pack has to be carried out. In this study, for the efficient design of piston ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

  • PDF

The Investigations of the Characteristics of Unsteady Piston Temperature Using Radiotracers-The Effect of Piston Ring Gap Position and Blow By Gas (방사성 추적자를 이용한 피스톤의 비정상 온도 특성에 관한 연구 -피스톤 링 갭 위치와 블로우 바이 가스의 영향-)

  • 김중수;김승일;민병순;박승일;오대윤;정성희;진준하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2000
  • To understand the thermal characteristics around the piston ring gap ring gap positions and piston temperatures are measured simultaneously. The locations of piston ring gap are measured by the radio-tracer method and piston temperature are measured by a K-type thermocouple and scissors type linkage system. From these experiments following facts are clarified. Piston temperatures fluctuate according to the piston ring rotation. And the temperature fluctuation is mainly affected by top ring gap position irrelevant to the second ring fop position. If the top ring gap position increases and the temperature of top ring groove shows maximum value when top rin gap position coincide with temperature measuring point. The maximum amplitude of temperature fluctuation which is proportional to the blow by gas rate is around 12-15$^{\circ}C$.

  • PDF

Analysis of Ring Pack Lubrication (다중 피스톤 링계의 피스톤 링 윤활 해석)

  • 이재선;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.232-239
    • /
    • 1999
  • Generally quantity of supply oil for piston ring lubrication in an internal combustion engine may be insufficient to fill the entire volume formed in the clearance between piston ring and cylinder liner. Thus oil starvation condition should be considered for the analysis of piston ring lubrication. In order to reasonably estimate amount of oil left on the cylinder liner, adequate boundary condition should be adapted for the analysis of ring pack lubrication. In this analysis of ring pack lubrication of an internal combustion engine, oil starvation and open-end boundary conditions are considered at inlet and outlet of piston rings. It is revealed that piston rings are operated under oil starvation in most operating cycle and the result with these conditions are quite different from that with fully-flooded assumption.

  • PDF

Analysis of Ring Pack Lubrication Considering Oil Transport (오일 이송을 고려한 다중 피스톤 링계의 피스톤 링 윤활 해석)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.233-239
    • /
    • 1999
  • Generally quantity of supply oil for piston ring lubrication in an internal combustion engine may be insufficient to fill the entire volume formed in the clearance between piston ring and cylinder liner. Thus oil starvation condition should be considered for the analysis of piston ring lubrication. In order to reasonably estimate amount of oil left on the cylinder liner, adequate boundary condition should be adapted for the analysis of ring pack lubrication. In this analysis of ring pack lubrication of an internal combustion engine, oil starvation and open-end boundary conditions are considered at inlet and outlet of piston rings. It is revealed that piston rings are operated under oil starvation in most operating cycle and the result with these conditions are quite different from that with fully-flooded assumption.

Effect of Coating Layer Hardness on the Wear Characteristics of Diesel Engine Cylinder liner-Piston Ring (디젤엔진 실린더 라이너-피스톤 링의 코팅 층 강도에 따른 마모특성 연구)

  • Jang, J.H.;Kim, J.H.;Kim, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.343-349
    • /
    • 2008
  • The wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This study will discuss characteristics of wear between hard and soft piston ring coatings with running surface of cylinder liner. Detailed tribological analysis by using Pin-on-Disk(POD) testing machine describes the lubricity mechanism between piston ring coatings and cylinder liner at different temperature with and without oil. The effect of surface roughness of the cylinder liner on the friction coefficient and wear amount of piston ring coatings will also be analyzed. To simulate scuffing mechanism between piston ring and cylinder liner, accelerated lab testing was performed. This study will provide the data from tribological testing of hard and soft piston ring coatings against cylinder liner. Furthermore, the microstructures and morphological features of the surface and the near-surface materials during wear will be investigated. From the scuffing test by using POD testing machine, scuffing mechanisms for the soft and hard coating will be analyzed and experimentally confirmed.

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF