• 제목/요약/키워드: Piston cavity

검색결과 51건 처리시간 0.022초

극초음속 스크램제트 엔진의 연소특성 (Combustion Characteristics of Hypersonic SCRamjet Engine)

  • 원수희;정은주;정인석;최정열
    • 한국추진공학회지
    • /
    • 제8권1호
    • /
    • pp.61-69
    • /
    • 2004
  • 본 연구는 극초음속 모델 스크램제트 엔진 연소기의 화염지지와 연료-공기 혼합과정의 특성을 살펴보기 위하여 수치해석을 이용하여 수행되었다. 연료분사 방법으로 수소연료가 초음속 유동장에 수직분사되는 경우와 공동내부에 분사되는 두 가지 경우를 채택하였으며 각각 UQ(University of Queensland, Australia)와 ANU(Australian National University, Australia)의 충격파 풍동을 이용하여 실험이 수행되었다. 수치해석을 통하여 수직분사 상류의 박리영역과 공동주변에서 연소현상이 관찰되었다. 수직분사의 박리영역과 공동내부분사의 공동은 재순환 영역을 발생시키며, 이 재순환 영역은 연료-공기의 혼합을 촉진시킨다. 또한 자발점화가 박리영역-자유류, 공동-자유류 경계면에서 발생함을 알 수 있었다.

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.

直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達 (The effect of air and spray turbulence in a D.I. diesel engine on the flame progress)

  • 방중철;태전간랑
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.44-52
    • /
    • 1987
  • 본 논문에서는 앞서의 연구들에서 얻은 연구성과를 실제의 디이젤기관에 적용 시켜 화염의 발달상태와 기관속도의 상승 등을 고찰하여, 그 유효성을 평가했다. 또 고온공기류덕트에서는 실험하기가 곤란했던, 분무자체에 족회운동을 일으킨 경우의 연 소과정에 대해서도 피스톤요부의 벽면에 충돌하는 분무의 각도를 변화시켜, 고속도 화 염사진으로 부터 검토했다.

분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석 (Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio.)

  • 정훈;차경세;박찬국
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구 (A study on simultaneous injection molding and two-color coating for car gas cap cover)

  • 배형섭;박동현;김부곤;서창호;허원근;이호상
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측 (CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre)

  • 김성태;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

가스체 연료를 사용하는 압축착화기관에 관한 기초적 연구 (Fundamental Experiments of a Compression Ignition Engine Using Gaseous Fuel)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.147-157
    • /
    • 1996
  • Natural gas is gaining more attraction as a future fuel in particular both for environmental protection and energy conservation. In order to bring about more widespread use of gaseous engines, the technology capable of achieving output and efficiency performance equivalent to that of diesel engines needs to be developed. In the present paper, the requirements of the pilot torch from pre-chamber for ensuring ignition and promoting combustion are discussed by means of taking high-speed flame photography and system can run with leaner mixture of various fuels comparing to the electric plug ignition system cause the ignition delay period ignited with the torch and the combustion period are very short in spite of changing A/F of gaseous fuels in the main chamber. However, the suitable piston-cavity design for the use of lower-hydrocarbon fuels such as propane and butane must be discussed increasingly in the mear future.

직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향 (The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.