• 제목/요약/키워드: Piping vibration

검색결과 171건 처리시간 0.026초

APR1400 종합진동평가를 위한 배관시스템의 유동유발진동 간이평가 (Screening Method for Flow-induced Vibration of Piping Systems for APR1400 Comprehensive Vibration Assessment Program)

  • 고도영;김동학
    • 한국소음진동공학회논문집
    • /
    • 제25권9호
    • /
    • pp.599-605
    • /
    • 2015
  • U.S. Nuclear Regulatory Commission(NRC), Regulatory Guide(RG) 1.20(Rev.3, 2007년)은 원자로 냉각재계통, 주증기, 주급수 및 복수시스템의 주요 배관 및 기기에 대하여 압력변동 및 진동에 의한 잠재적 유해효과에 대한 평가를 요구한다. 그러나 증기발생기와 연결된 주증기, 주급수 및 복수시스템의 주요 배관 전체에 대하여 상세 해석하는 것은 매우 복잡하여 한계가 있다. 이 논문은 APR1400 원전의 종합진동평가(comprehensive vibration assessment program, CVAP)를 수행하기 위하여 증기발생기에 연결된 2차측 주요 배관의 음향공진과 펌프유발진동을 위한 간이평가 방법에 관한 것이다. 이 논문에서는 이러한 배관시스템의 잠재적 진동 원인이 무엇인지, 음향공진과 펌프유발진동의 가능성을 예방하기 위한 간이평가 방법은 무엇인지를 고찰하고자 한다. 이 논문은 APR1400 원전 증기발생기와 연결된 주증기 및 주급수 배관의 유동유발진동 간이평가를 위해 사용될 것으로 판단된다.

석유화학 플랜트 배관계의 응력 및 진동 평가와 적용에 관한 연구 (A Study on Stress and Vibration Evaluations and Application of Piping System in Petrochemical Plant)

  • 민선규;최명진;장승호
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.110-116
    • /
    • 2002
  • Here are shown on stress and vibration evaluations and application of piping system in petrochemical plant with and actual example. While stress evaluation by thermal growth has no argument on the calculated results, vibrational evaluations have some different results in accordance with the evaluation methods. In case of the static stress evaluation the ASME B3l.3 code defines 7000 cycles of fatigue lift: in operating the piping system with a design condition. However, the method of vibrational evaluation on piping systems in petrochemical plants has not been established clearly, yet. In this stuffy, it is purposed to present the requirement of a vibrational evaluation method for petrochemical plant piping system, with an actual application.

발전소 배관계의 내진해석 (Seismic Analysis of Power Plant Piping System)

  • 김정현;이영신;김연환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2011
  • In this study, the seismic analysis of power plant piping system was performed using finite element model. This study was performed by ANSYS 12.1. For qualification of power plant piping system, the response spectrum analysis was performed using the given operating basis earthquake(OBE) and safe shutdown earthquake(SSE) floor response spectrum. The maximum stresses of power plant piping system were 166 MPa under OBE condition and 281 MPa under SSE condition. Thus, it can shown that the structural integrity of tpower plant piping system has a stable structure for seismic load conditions.

  • PDF

대형펌프와 조합된 배관계 진동 저감 (Vibration Reduction of Pump And Pipe System)

  • 배춘희;원종범;조철환;양경현;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.652-657
    • /
    • 2000
  • In this paper, Firstly, it is shown that the high vibration source of piping system is the pulsation transmission of pipe line element, such as, orifice plate, valves and the control valve is a broad band source and the branch wall and the cavity have vortex frequency. Secondly, in order to decrese the high vibration of piping system, some practical Friction damper with high damping have been developed and its effectiveness is investigated as installing it at piping system practically.

  • PDF

변위 가정법을 이용한 배관 시스템의 정상 상태 진동 해석 (The steady-state vibration analysis of piping system by applying displacement assumption method)

  • 이성현;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.827-830
    • /
    • 2011
  • The equation of motion for the piping system conveying harmonically pulsating fluid is presented. When pulsating fluid flows, the properties of this system like mass, stiffness and damp is changing according to fluid fluctuation. To solve the steady-state time response of this system, numerical integration method of differential equation was usually used. But this method has some problem such time consuming method and difficulty of converging. Therefore this research suggests reliable and efficient numerical method to solve steady-state time response of piping system by using displacement assumption method.

  • PDF

Fatigue Evaluation for the Socket Weld in Nuclear Power Plants

  • Choi, Young Hwan;Choi, Sun Yeong;Huh, Nam Soo
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.216-221
    • /
    • 2004
  • The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. III requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. (1) The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. (2) The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. (3) 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. (4) The reduction of the weld leg size from $1.09*t_1$ to $0.75*t_1$ can affect severely on the socket weld integrity.

분기관 진동에 의한 피로파괴 (Vibration Related Branch Line Fatigue Failure)

  • 전형식;박보용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.113-124
    • /
    • 1990
  • Tap lines are small branch piping generally less than two inches in diameter. They typically branch off of header piping having a much larger diameter. An example of a common tap line is a 3/4 inch size high point vent or low point drain. Most tap lines have at least one valve near the header tap connection to provide isolation. Two valves are often required for double isolation. A light water reactor(LWR) nuclear power plant will have several hundred tap lines. These lines come in many sizes and shapes and serve numerous functions. A single process piping valve may have three different tap lines associated with it (figure 1). Table 1 delineates the different categories of tap lines. Vibration failures of tap lines are a common occurrence in all industrial plants including nuclear and fossil power plants. These types of failures constitute a significant percentage of all piping related failures. An unscheduled plant shutdown or outage resulting from the failure of a tap line decreases plant reliability and may have a detrimental effect on plant safety. Most tap line vibration failures can be avoided through the use of appropriate routing and support techniques. Standardized designs can be developed for use in a myriad of applications. These designs will not only minimize failures but will also reduce the necessary analysis and installation efforts.

  • PDF

발전소 대형 수배관계의 충격성 이상 과도진동의 특성 고찰 사례 (Examination on Shock Vibration of Feed-Water Recirculation piping in Power Site)

  • 김연환;양경현;배시연;;조종현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.475-479
    • /
    • 2011
  • Leak problem with large pressure drop occurrs non-periodic shock pulsation due to the deterioration of a isolation valve in feed-water recirculation piping system. This paper discusses on the shock vibration and noise occurred due to the effect of acoustical shock pulsations by degradation of the isolation valve in a power site.

  • PDF

고온소듐 내부유동을 갖는 액체금속로 중간열전달계통 배관에 대한 진동특성 해석 (Vibration Analysis for IHTS Piping System of LMR Conveying Hot Liquid Sodium)

  • 구경회;이형연;이재한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.386-391
    • /
    • 2001
  • In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations.

  • PDF

석유화학 플랜트의 배관계 설계기준에 대한 연구 (A Study on Design Criteria of Piping System in Petrochemical Plant)

  • 민선규;최명진
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.192-199
    • /
    • 2002
  • Largely, there are three kinds of the design criteria of piping system in petrochemical plant. The first is on the pipe thickness in accordance with the design pressure of piping system. The second is on the static state evaluation by thermal growth and the other is on the dynamic evaluation by piping vibration. According to the ASME B31.3 code, the internal pressure design thickness fur straight pipe shall be calculated as a code formula. And the static design by thermal displacement is defined 7000 cycles of fatigue life in operating the piping system with a design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to the static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.