• Title/Summary/Keyword: Piping support

Search Result 73, Processing Time 0.025 seconds

A Stress Analysis of Feeedwater Heater Shell in Nuclear Power Plant (원전 급수가열기 동체 응력 해석)

  • Song, Seok-Yoon;Kim, Hyung-Nam
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Feedwater Heaters are important components in a nuclear power plant. As the age of heater increases, the maintenance cost required for continuous operation also increases. Most heaters have the carbon steel shells, tube support plates and flow baffles. The carbon steel is susceptible to flow-accelerated corrosion. This is especially true if the flow has a two-phase mixture of steam and condensate. The wall thinning around the wet steam entrance area of the shell is inevitable during some long term operation. The structural integrity of the feedwater heater shell affects the safe operation of the nuclear power plant. Therefore, it is needed for the thinned shell to be repaired. The maintenance method for preventing failure of the shell should be determined by investigating various factors including the stress distribution of thinned area. The stress analysis of the shell including the steam entrance region is studied in this paper. The results of thinned shell is compared with that of intact shell.

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

3-D Finite Element Analyses of Steam Generator Tubes Considering the Gap Effects (간극효과를 고려한 증기발생기 전열관의 3차원 유한요소해석)

  • Cho, Young Ki;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • Steam generator is one of the main equipments that affect safety and long term operation in nuclear power plants. Fluid flows inside and outside of the steam generator tubes and induces vibration. To prevent the vibration the tubes are supported by AVB (anti vibration bar). When the steam generator tube contact to AVB, it is damaged by the accumulation of wear and corrosion. Therefore studies are required to determine the effects of the gap between the steam generator tube and AVB. In order to obtain the stress and the displacement distributions of the steam generator tube, three dimensional finite element analyses were performed by using the commercial program ANSYS. Using the calculated the stress and the displacement distributions, the static residual strength of the steam generator tube can be evaluated. The results show that the stress and displacement of the steam generator tube increase significantly compared with the results from a zero-gap model.

Eddy Current Testing of Type-439 S/S Tube of MSR in Turbine System (터빈 습분분리재열기 Type-439 스테인리스강 튜브 와전류검사)

  • Lee, Heejong;Cho, Chanhee;Jung, Jeehong;Moon, Gyoonyoung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • The tubes in heat exchanger are typically made of copper alloy, stainless steel, carbon steel, titanium alloy material. Type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs) in turbine system. LP feedwater heaters generally utilize thin wall Type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the O.D(outside diameter) surface of Type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

  • PDF

Development of the S/G TSP Clogging Image Analysis Algorithm (증기발생기 유로홈막힘 사진판독 알고리즘 개발)

  • Cho, Nam Cheoul;Kim, Wang Bae;Moon, Chan Kook
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • The clogging of the flow area at the tube support plates(TSPs), especially at the upper TSPs results in the water level oscillation of a steam generator during normal operation. A reduction of the TSP flow area causes to increase in pressure drop within the two-phase flow zone, which destabilizes the boiling flow through the tube bundle. This phenomenon was occasionally observed at a few domestic and foreign nuclear power plants. One of the methods for defining the flow area clogging is visual inspection, which is the most effective inspection method. The results of the visual inspection for TSPs' flow area are clogging images on TSPs' quartrefoil lobes. These images are complexly distorted due to lens aberration and external factors like the distance to a subject and angle etc. In this work, we developed the analysis algorithm for clogging image of the TSP flow area of steam generators. For this purpose, we designed an image verification device applicable to the camera employed in the field for visual inspection and then, we demonstrated the validity of image analysis algorithm by using this device and commercial autoCAD program.

Microstructure characterization technique of spacer garter spring coil X-750 material (스페이서 가터 스프링 코일 X-750 소재 정밀 조직 분석 방법)

  • Hyung-Ha Jin;I Seol Ryu;Gyeng-Geun Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • In the periodic surveillance material test for the spacer component of fuel channel assembly in CANDU, a microstructural characterization analysis is required in addition to the mechanical property evaluation test. In this study, detailed microstructure analysis and simple mechanical property evaluation of archive spacer parts were conducted to indirectly support the surveillance test and assist in the study of spacer material degradation. We investigated the microstructural characteristics of the spacer garter spring coil through comparative analysis with the plate material. The main microstructure characteristics of the garter spring coil X-750 are represented by the fine grain size distribution, the ordering phase distribution developed inside the matrix, the high dislocation density inside the grains, and the arrangement of coarse carbides. In addition, the yield strength of the garter spring coil X-750 was indirectly evaluated to be approximately 1 GPa. We also established an analytical method to elucidate the microstructural evolution of the radioactive spacer garter spring coil X-750 based on Canadian research experiences. Finally, we confirmed the measurement technique for helium bubble formation through TEM examination on the helium implanted X-750 material.

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank (IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가)

  • Park, Heewoo;Park, Jinseong;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

The Assembly and Test of Pressure Vessel for Irradiation (조사시험용 압력용기의 조립 및 시험)

  • Park, Kook-Nam;Lee, Jong-Min;Youn, Young-Jung;June, Hyung-Kil;Ahn, Sung-Ho;Lee, Kee-Hong;Kim, Young-Ki;Kennedy, Timothy C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.