• 제목/요약/키워드: Piping parameters

검색결과 87건 처리시간 0.045초

울진1,2호기 출력최적화 및 증기발생기 교체가 주급수 제어계통 안정도에 미치는 영향연구 (Research on a Stability of Feedwater Control System after Stretched Power Uprate and Replacement Steam Generator for Ulchin Units 1&2)

  • 윤덕주;김인환;이재용
    • 한국압력기기공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.14-20
    • /
    • 2012
  • Full load rejection capability of nuclear power plant depends primarily on steam dump capacity (SDCAP) and steam generator level control capability. Recently, Ulchin Units 1&2 have performed stretched power uprate (SPU) and replacement steam generator (RSG) projects, which increase the power by 4.5 percent. They change major design or operating parameters and especially reduces steam dump capacity at full power due to increase of the steam flow. The reduction of SDC after SPU results in degradation of heat removal capability in full load rejection transients. Therefore, we should perform evaluation to determine whether reactor trips occur in large load rejection transients. Uchin Units 1&2 have experienced full load rejection (FLR) three times from 2004 to 2010. Operating data from the plant occurrence of FLR at Ulchin Units 1&2 showed that steam generator (SG) level transients were limiting in point of reactor trip. However the plant had never reached reactor trip in the FLR and successfully continued in house load operation. The parameters and setpoints for the SG will be changed if the SG is replaced. Therefore, we evaluated the appropriateness of steam dump, main feedwater and steam generator water level control system preventing the plant from reactor trip in case of FLR by the parameter sensitivity study whether SG water level operated smoothly after SPU and RSG projects.

가스배관재의 X-선 회절분석과 피로균열거동에 관한 연구 (A Study on the X-ray Diffraction Analysis and the Fatigue Crack Growth Behavior for the Gas Piping Material)

  • 임만배;윤한기;박원조
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.54-58
    • /
    • 2002
  • This study investigates a relationship between fracture mechanics parameters (Stress Intensity Factor Range: ΔK, Maximum Stress Intensity Factor; Kmax) and X-ray parameters (residual stress:$\sigma$r half-value breadth: B) for SG365 steel at elevated temperature up to 30$0^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to the direction of crack length was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase at low ΔK region, to reach a maximum value at a certain value of Kmax or ΔK and then to decrease. Residual stress was independent of stress ratio by arrangement of ΔK and half value breadth were independent of the arrangement of Kmax. The equation of $\sigma$r-ΔK was established by the experimental data. therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

Assessment of flow-accelerated corrosion-induced wall thinning in SA106 pipes with elbow sections

  • Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1244-1249
    • /
    • 2024
  • A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.

영광원자력 배관소재의 재료물성치 평가 (II) -안전주입계통- (Evaluation of Material Properties for Yonggwang Nuclear Piping Systems(II) - Safety Injection System-)

  • 김영진;석창성;장윤석
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1451-1459
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for safety injection system of Yonggwang 3,4 nuclear generating stations. A total of 62 tensile tests and 46 fracture toughness tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effect of test temperature on fracture toughness was significant while the effects of pipe size and crack plane orientation on fracture toughness were negligible. Fracture toughness of the weld metal was in general higher than that of the base metal.

체크밸브의 비선형거동에 관한 연구 (A Study on the Nonlinear Behavior of Check Valve System)

  • 박철희;홍성철;박용석
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.221-230
    • /
    • 1994
  • This paper deals with the dynamic stability and the nonlinear behavior of a check valve system. The nonlinear equations of motion of fluid-valve interation model are derived, which are composed of the unsteady Bernoulli's equation included the jet flow mechanism and equation of motion of a check valve formulated by one degree of freedom. Also, the derived equations of motion are nondimensionalized. According to the change of the nondimensional parameters, the stabilities of the system are analyzed, and the nonlinear interaction responses of the check valve and the passing flow rate are obtained. As the results, the stability charts are constructed for the variation of nondimensional parameters. It is shown that self-excited vibrations exist in a check valve system. And also the Hopf bifurcation and the periodic doubling are found. The presented theoretical model of a check valve system can be utilized to the design and operation of a piping system with the check valve.

  • PDF

우리나라 주요 록휠 댐의 지반공학적 특성 (Geotechnical Characteristics of Major Earth and Rockfill Dams in Korea)

  • 유태성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.3.2-27
    • /
    • 2002
  • This paper presents the status of dam construction in Korea, along with a brief assessment of the dam design and construction practice. The assessment is based on publically available design and construction records of the major existing rockfill dams which have been constructed since early 1970's, and focussed in identifying geotechnical characteristics of design and construction parameters of the dams. Though the assessment, two representative dams, having unique geotechnical characteristics, are selected for comprehensive comparison of their geotechnical engineering behavior during construction and operation. The comparison yields very interesting findings on the effects of various design and construction parameters on dam behavior.

  • PDF

포고억제장치(PSD) 동특성 모델링에 관한 연구 (Study on Dynamics Modeling of Pogo Suppression Device (PSD))

  • 이준경
    • 한국추진공학회지
    • /
    • 제11권5호
    • /
    • pp.23-30
    • /
    • 2007
  • PSD(pogo suppression device)는 액체 추진 로켓의 추진제 공급부를 모사한 배관 시스템에 대한 기존의 실험 연구를 통해 배관 시스템의 동특성을 변화시킬 수 있음을 확인할 수 있었다. 본 연구에서는, PSD에 대한 수학적 모델을 만들고, 각 변수에 대한 값을 결정하는 과정에서 이론적으로 구하기 힘든 변수를 파악하여, 이를 기존의 실험 결과로부터 구하고자 하였다. 그를 위해, 선형화된 전달함수를 만들어 전체 시스템에 대한 불안정성을 판단하는 방법에 대해, PSD를 유체 섭동에 대한 연속 방정식 등의 지배 방정식을 이용하여, 제작된 PSD의 실제 적용시 중요한 이너턴스, 컴플라이언스, 레지스턴스 등의 변수를 수식화하고, 실험 결과를 이용하여 이를 정량화 하는 방법을 제시하였다.

Dynamic Analysis and Design of Uncertain Systems Against Random Excitation Using probabilistic Method

  • Moon, Byung-Young;Kang, Beom-Soo;Park, Jung-Hyen
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1229-1238
    • /
    • 2002
  • In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of the structure with uncertain parameters is proposed. The concept of the proposed method is that the perturbed equation of each uncertain substructure is obtained using the finite element method, and the perturbed equation of the overall structure is obtained using the mode synthesis method. By this way, the reduced order perturbed equation of the uncertain system can be obtained. And the response of the uncertain system is obtained using probability method. As a numerical example, a simple piping system is considered as an example structure. The damping and spring constants of the support are considered as the uncertain parameters. Then the variations of the eigenvalues, the correlation function and the power spectral density function of the responses are calculated. As a result, the proposed method is considered to be useful technique to analyze the sensitivities of eigenvalues and random response against random excitation in terms of the accuracy and the calculation time.

Vibration control for serviceability enhancement of offshore platforms against environmental loadings

  • Lin, Chih-Shiuan;Liu, Feifei;Zhang, Jigang;Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.403-414
    • /
    • 2019
  • Offshore drilling has become a key process for obtaining oil. Offshore platforms have many applications, including oil exploration and production, navigation, ship loading and unloading, and bridge and causeway support. However, vibration problems caused by severe environmental loads, such as ice, wave, wind, and seismic loads, threaten the functionality of platform facilities and the comfort of workers. These concerns may result in piping failures, unsatisfactory equipment reliability, and safety concerns. Therefore, the vibration control of offshore platforms is essential for assuring structural safety, equipment functionality, and human comfort. In this study, an optimal multiple tuned mass damper (MTMD) system was proposed to mitigate the excessive vibration of a three-dimensional offshore platform under ice and earthquake loadings. The MTMD system was designed to control the first few dominant coupled modes. The optimal placement and system parameters of the MTMD are determined based on controlled modal properties. Numerical simulation results show that the proposed MTMD system can effectively reduce the displacement and acceleration responses of the offshore platform, thus improving safety and serviceability. Moreover, this study proposes an optimal design procedure for the MTMD system to determine the optimal location, moving direction, and system parameters of each unit of the tuned mass damper.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.