• Title/Summary/Keyword: Piping Material

Search Result 227, Processing Time 0.025 seconds

Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination (C(T) 시편 측면 홈 유무에 따른 파괴저항곡선 변화가 유한요소 손상모델 변수 결정에 미치는 영향 평가)

  • Kim, Hune-Tae;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jong-Sung;Choi, Myung-Rak;Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.539-546
    • /
    • 2016
  • In this paper, the effect of J-R curve changes on the determination of parameters in a failure model owing to the presence or absence of a side groove in a C(T) specimen is investigated. A stress-modified fracture strain model is implemented for FE damage simulations. C(T) specimens were taken from SA508 grade 1a low-alloy steel piping material, and some of them were processed with a side groove. Fracture toughness tests were performed at room temperature and at $316^{\circ}C$. The parameters of the failure model were determined by damage simulations using the J-R curves obtained from the tests. Finally, the results show that the determination of failure model parameters is not affected by variations in J-R curves owing to the presence or absence of a side groove.

Numerical Analysis of Unsteady Heat Transfer for Location Selection of CPVC Piping (CPVC 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.33-39
    • /
    • 2015
  • In this paper, a numerical experiment was conducted to find out the optimal location of electrical heat trace for anti-freeze of water inside the CPVC pipe for fire protection. The unsteady incompressible Navier-Stokes equations coupled with energy equation were solved. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the present numerical experiment, it has been found that the vector field of water inside the PVC pipe is opposite to the case of steel because of the huge difference of material properties of the two pipes. Furthermore, it was found that the lowest part of the pipe was an optimal position for electrical heat trace since the minimum water temperature of the case was higher than those of the other cases.

A Study on the Effect of the Compaction Density on the Stability of Earth Dam (흙댐의 다짐밀도가 안정도에 미치는 영향에 관한 연구)

  • 윤충섭;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.82-95
    • /
    • 1989
  • This study was carried out for the stability analysis of earth dam by the variation of compaction density. The test samples were taken from five kinds of soil used for banking material and the degree of compaction for this samples were chosen 100, 95, 90, 85, and 80 percent. The stability problems were analysed by the settlement and camber( extra banking) of dam, strength parameter and dam slope, and coefficient of permeability and seapage flow through dam body. The results of the stability analysis of earth dam are as follows. 1. The more the fine particle increases and lower the compaction degree becomes, the lower the preconsolidation load becomes but the compression index becomes higher. 2. Sixty to eighty percent of settlement of dam occurs during the construction period and the settlement ratio after completion of dam is inversly proportional to the degree of compaction. 3. The camber of dam has heigher value in condition that it has more fine particle(N) and heigher dam height(H) with the relation of H= e(aN-bH-e). 4. The cohesion(C) decreases in proportion to compaction degree(D) and fine particle(N) with the relation of C= aD+ bN-c, but the internal friction angle is almost constant regardless of change of degree of compaction. 5. In fine soil, strength parameter from triaxial compression test is smaller than that from direct shear test but, they are almost same in coarse soil regardless of the test method. 6. The safety factor of the dam slope generally decreases in proportion to cohesion and degree of compaction but, in case of coarse soil, it is less related to the degree of compaction and is mainly afected by internal friction angle. 7. Soil permeability(K) decreases by the increases of the degree of compaction and fine particle with relation of K=e(a-bl)-cN) 8. The more compaction thickness is, the less vertical permeability (Kv) is but the more h6rzontal permeability (KH) is, and ratio of Kv versus KH is largest in range from 85 to 90 percent of degree of corn paction. 9. With the compaction more than 85 percent and coefficient of permeability less than ${\alpha}$X 10-$^3$cm/sec, the earth dam is generally safe from the piping action.

  • PDF

A Study on Status Survey for the Improvement of Shelter Facilities for Residents (주민대피시설의 성능개선을 위한 실태조사에 관한 연구)

  • Park, Namkwun;Kang, Shinwook
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • purpose of this study was to conduct status survey on existing shelter facilities for residents and use it as basic material to plan and design improved shelter facilities in the future. As the result, first, although existing shelter facilities are judged to have been designed in consideration only of the protection from high explosive shells, actual protection capability is significantly low against high explosive shells when exit direction and protection capabilities of main entrances were investigated. Second, all the 7 facilities did not have air purifier with filters installed for the air that flows into the inside from outside and since the height of air exhausts and intake pipes in the outside are also close to the earth, there are possibilities that heavy contaminated air can flow into the inside. Third, although some facilities have anti-explosion doors installed, it is impossible to use them as chemical, biological and radiological (CBR) shelter because of improper installation of openings and anti-explosion valves as well as poor plumbing that cannot ensure air-tightness and poor finish of piping penetration.

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Optimum Design on Fire Resistance of Gas Cylinder Cabinets using Thermal Analysis (열해석을 이용한 가스 실린더 캐비닛의 내화성능 최적설계)

  • Nam, Minseo;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Gas cylinder cabinets have risks such as cylinder explosion and scattering of debris when a fire occurs. These risks are likely to cause gas spills and cause secondary damage. In order to reduce damage, it is very important to secure the fire resistance performance of the gas cylinder cabinet. In foreign countries, NFPA codes in the United States and EN-14470-2 in Europe stipulate fire resistance test standards for gas cylinder cabinets to protect internal cylinders for a certain period of time in a situation where gas cylinder cabinets are exposed to flames. However, in Korea, only internal pressure performance and airtight performance standards are specified, and the target is limited to piping, and research and regulations for the fire resistance performance of gas cylinder cabinets are insufficient compared to overseas. Therefore, in this study, finite element analysis was used to establish fire resistance standards for domestic gas cylinder cabinets. In the event of a fire, optimal conditions are derived in terms of structure and material.

Effect of Solution Temperature on the Cavitation Degradation Properties of Epoxy Coatings for Seawater Piping

  • Jeon, J.M.;Yoo, Y.R.;Jeong, M.J.;Kim, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.335-346
    • /
    • 2021
  • Since epoxy resin coating shows excellent properties in formability, adhesion, and corrosion resistance, they have been extensively used in many industries. However, various types of damages in the epoxy coated tube within a relative short time have been reported due to cavitation erosion, liquid impingement, variation of temperature and pressure. Nevertheless, there has been little research on the effect of temperature on the cavitation degradation of epoxy coatings. Therefore, this work used an ultrasonic cavitation tester to focus on the effect of solution temperature on the cavitation properties of 3 kinds of epoxy coatings in 3.5% NaCl. The cavitation properties were discussed basis on the material properties and environmental aspects. As the solution temperature increased, even though with large fluctuation, the cavitation degradation rates of A and B coatings were reduced rapidly, but the rate of C coating was decreased gradually. In addition to the cushioning effect, the reason that the cavitation degradation rate reduced with solution temperature was partly related to the brittle fracture and water absorptivity of the epoxy coatings, and the water density, but was little related to the shape and composition of the compound in the coatings or the phase transition of the epoxy coating.

Heavy-impact sound insulation performance according to the changes of dry flooring structure in wall structure

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Lim, Hohwan;Kim, Jagon
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.89-98
    • /
    • 2017
  • The floor heating method generally uses a wet construction method including the installation of resilient material, lightweight foam concrete, heating piping, and finishing mortar. Such a wet construction method not only delays other internal finishing processes during curing period for two mortar pouring process, but also has a disadvantage that it is difficult to replace the floor heating layer when it deteriorated because it is integrated with the frame. Dry floor heating construction method can be a good alternative in that it can solve these defects. Conversely, when it applied to the wall structure that is vulnerable to the interlayer noise compared with the column-beam structure, the question about the heavy-impact sound(HIS) insulation performance is raised. Therefore, conventional dry floor heating method is hard to apply to the wall structure apartments. Therefore, for the purpose to improve the applicability of dry floor heating method in wall structure apartments, this study investigated the change of floor impact sound, especially HIS insulation performance which is one of the required performance for the floor structure. This study tried to examine whether the change of heavy-impact sound pressure level(SPL) shows a tendency at the significant level according to the shape and mass of the floor structure. Through filed experiments on wall structure apartment, this study confirmed that the form of the raised floor shows better HIS insulation performance than the fully-supported form. In addition, it was also confirmed that the HIS insulation performance increases with the mass on the upper part. Moreover, this study found the fact that a mass of about 30 kg/m2 or more should be placed on the upper structure to reduce the heavy-impact SPL according to the bang machine measuring method. Although this study has a limit due to insufficient experiment samples, if the accuracy of this study is increased, it will contribute to the diffusion of dry floor heating by setting the HIS insulation performance target and designing the dry floor heating structure that meets the target.

  • PDF

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.