• Title/Summary/Keyword: Piping Components

Search Result 183, Processing Time 0.021 seconds

A Plan to Develop Seismic Capacity Verification Procedures Based on the Elastic-Plastic Strain Features (탄소성 변형률 기반 내진성능 평가 절차서 개발 방안)

  • Hwang, Jong Keun;Jeong, Ill Seok;Kim, Beom Shig;Ahn, Sang Won;Bang, Hye Jin;Lee, Min Hee;Jeong, Hyeon Seob
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • A development plan for seismic capacity verification procedures of nuclear components based on the elastic-plastic strain (EPS) features is explained in this paper. The EPS methodology is more realistic to assess seismic responses of components to extreme seismic events beyond the safe shutdown earthquake (SSE) than current practices with the criteria of stress limits. The EPS based approach to analyze the seismic capacity of components can reduce over-conservatism in the current stress-based criteria and can incorporate the seismic responses of components deformed in plastic behavior by the motion of extreme earthquake.

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Application of Risk-Informed Inservice Inspection for Piping in Nuclear Power Plants (리스크 정보를 활용한 배관 가동중검사 적용)

  • Jin, Young Bok;Jin, Seuk Hong;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Pressurized Water Reactor Owners Group(PWROG) proposed and applied a risk-informed inservice inspection(RI-ISI) program to alternate existing ASME Section XI periodic inspections. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significant(HSS) and locations where failure mechanisms are likely to be present, and by improving the effectiveness on inspection of components because the examination methods are based on the postulated failure mode and the configuration of the piping structural element. The RI-ISI programs can reduce NDE, man-rem exposure, costs of engineering analysis, outage duration and chance of complicating plant operations etc. RI-ISI methods of piping inservice inspection were applied on 3 units(KSNP : Korea Standard Nuclear Power Plant) and are scheduled to apply on the other units. In this paper, we compared and showed the results of the 2 units and we concluded that the RI-ISI application could enhance and maintain plant safety and give unquantifiable benefits.

Investigation on the Studies for Welding Residual Stresses in Nuclear Components (원전 기기 용접 잔류응력 평가 연구 고찰)

  • Kim, Jong Sung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

Optimization Routing Path Design of Hydraulic Hose Using Energy Minimization (Energy Minimization을 이용한 유압 호스의 최적 경로 설계)

  • Yim, Ho-Bin;Kwon, Kang;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.246-252
    • /
    • 2012
  • The piping route of hydraulic hose is designed with avoiding interferences to surrounding components. However, in a real practice, the piping route is mostly decided with an expert's experiences on site due to the complexity of design. Thus, this paper proposes a design methodology of the optimized route of a hose. We use NURBS representation to describe the piping route, which is possible to be locally modified, and an energy minimization method is applied to avoid interferences to the surroundings. In other words, the NURBS curve describing a piping route is modified to meet the desired positions from minimizing the perturbation of the control points, and the strain energy of the curve is then optimized to make the curve natural. The proposed method is implemented and its feasibility is validated using the commercial CAD software, CATIA V5.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Considerations of Stress Assessment Methodology for BOP Pipings of PGSFR (PGSFR BOP계통 배관 응력평가 적용방안 고찰)

  • Oh, Young Jin;Huh, Nam Su;Chang, Young Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • NSSS (Nuclear Steam Supply System) and BOP (Balance of Plant) design works for PGSFR (Prototype Gen-IV Sodium Fast Reactor) have been conducted in Korea. NSSS major components, e.g. reactor vessel, steam generator and secondary sodium main pipes, are designed according to the rule of ASME boiler and pressure vessel code division 5, in which DBA (Design by Analysis) methods are used in the stress assessments. However, there is little discussions about detail rules for BOP piping design. In this paper, the detail methodologies of BOP piping stress assessment are discussed including safety systems and non-safety system pipings. It is confirmed that KEPIC MGE(ASME B31.1) and ASME BPV code division 5 HCB-3600 can be used in stress assessments of non-safety pipes and class B pipes, respectively. However, class A pipe design according to ASME BPV code division 5 HBB-3200 has many difficulties applying to PGSFR BOP design. Finally, future development plan for class A pipe stress assessment method is proposed in this paper.

Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants (스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정)

  • Na, Sang-Soo;Chung, Jae-Won;Bong, Suk-Kun;Jun, Dong-Ki;Kim, Yun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping (탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kang, Deok-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.