• Title/Summary/Keyword: Pipelines

Search Result 828, Processing Time 0.022 seconds

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

Pulsar observation with KVN

  • Kim, Chunglee;Dodson, Richard;Jung, Taehyun;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2014
  • Radio pulsars are highly magnetized, rapidly rotating neutron stars that emit synchrotron radiation along the magnetic axes at their spin frequencies. Traditionally, pulsar observations have been done at low frequencies (MHz up to a few GHz), since radio pulsar spectrum is known to a power-law with a steep negative spectral index. More recently, high-frequency pulsar observations (several GHz and above) have been made as a broadband spectrometer and fast computers became available. High-frequency pulsar observations will provide information on radio emission mechanism of pulsars in the vicinity of the neutron star surface. There is also huge interest from gravitational-wave and astrophysics community to find a pulsar in the center of our Galaxy. The Korean VLBI Network has three 21-m single dishes in the Korean peninsula. Using KVN's lowest observational frequency of 22-GHz, we performed test observations with the KVN targeting a few selected known, bright pulsars. In addition, we have been developing pulsar pipelines that can be utilized with a VLBI facility using Mark-V. We present a brief introduction of radio pulsars and show data obtained with the KVN.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method (초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Chung, Min-Hwa;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method (초음파에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Chung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

KMTNet Supernova Program : Year One Progress Report

  • KIM, Sang Chul;Moon, Dae-Sik;Lee, Jae-Joon;Pak, Mina;Park, Hong Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2016
  • With the official start of the operations of the three 1.6 m KMTNet telescope systems from 2015 October, we have initiated a program named KMTNet Supernova Program (KSP) from 2015 to 2019 aiming at searching for supernovae (SNe), other optical transients and related sources. Taking advantage of the 24-hour coverage, high cadence and multi-color monitoring observations, this is optimal for discovering early SNe and peculiar ones. From the start of the previous test observing runs of ~half a year, we have performed observations on several nearby galaxy groups and nearby galaxies with short separations on the sky. We have developed data reduction/variable object search pipelines, meanwhile we have discovered some interesting transient objects. We also stacked all the images for given fields, searched for new objects/galaxies, and discovered several new dwarf galaxies, e.g., in the NGC 2784 galaxy group field (H. S. Park et al.'s talk). We will report the current project status and the results obtained.

  • PDF

Source Identification in 2-Dimensional Scattering Field Based on Inverse Problem (역문제를 이용한 2차원 산란장에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1262-1268
    • /
    • 2014
  • Inverse problem is very interest in the sciences and engineering, in particular for modeling and monitoring applications. By applying inverse problem, it can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we firstly consider 2-dimensional EM scattering problem and present the FDTD method to estimate unknown source. In this case, non-linear CGM technique is used to investigate unknown sources corresponding to measured data obtained from forward problem in near field. The proposed technique for solving the inverse source problem presents a reasonable agreement and can be applied to investigate an internal source signal of embedded security module.

Analysis of Buried Pipelines Using Ground Strain Input from Seismic Waves (지반변형률에 의한 매설관의 지진차 거동 해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Eo. Jun;Lee, Kang-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.15-26
    • /
    • 2000
  • 지진파 전파로 인한 매설관에 작용하는 지진하중은 지진특성 및 지반조건에 따른 지반변형률로부터 산정되어야 한다. 그러나. 기존에 사용되고 있는 경험적인 방법에 의해 계산된 지반변형률 모형은 지진 및 지반의 지역적 특수성을 고려할 수 없는 문제점을 내포하고 있다. 따라서, 본 연구에서는 이러한 문제점을 개선하기 위하여 지진특성 및 지반조선을 반영할 수 있는 수정된 지반변형률 모형을 제안하고 개발된 모형을 매설관로의 지진해석에 지진하중으로 적용하였다. 여기서, 지반변형률을 예측하기 위한 지진판 전파속도는 지반조건을 고려할 수 있도록 파 에너지분포에 근거한 분산곡선을 제안하여 산정하였다. 이러한 과정을 통해 얻어진 지반변형률 산정방법에 타당성을 파악하기 위해 예측한 지반변형률과 과거 지진으로 실측된 지반변형률을 비교하였다. 타당성이 입증된 지반변형률 모형을 매설관의 하중으로 적용하여 지진해석을 실시하였으며, 계산결과는 범용 유한요소해석을 통한 동해석 및 응답변위법에 의한 결과와 비교하였다. 이를 통해 지반 변형률 모형을 적용한 매설관 지진해석의 타당성을 검증하였다. 또한, 지진 및 지반환경이 다른 다양한 관의 특성을 반영하기 위해, 지진 지반 및 관의 영향 인자에 대해 매개변수 해석에 실시되었으며, 이로써 본 연구의 활용성을 검토하였다.

  • PDF

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

Advanced procedure for estimation of pipeline embedment on soft clay seabed

  • Yu, S.Y.;Choi, H.S.;Park, K.S.;Kim, Y.T.;Kim, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • In the present study, the advanced procedure has been proposed to estimate higher accuracy of embedment of pipes that are installed on soft clay seabed. Numerical simulation by OrcaFlex simulation code was performed to investigate dynamic seabed embedment, and two steps, i.e., static and dynamic analysis, were adopted. In total, four empirical curves were developed to estimate the seabed embedment including dynamic phenomena, i.e., behaviour of vessel, environmental condition, and behaviour of nonlinear soil. The obtained results were compared with existing methods (named general method) such as design code or guideline to examine the difference of seabed embedment for existing and advance methods. Once this process was carried out for each case, a diagram for estimating seabed embedment was established. The applicability of the proposed method was verified through applied examples with field survey data. This method will be very useful in predicting seabed embedment on soft clay, and the structural behaviours of installed subsea pipelines can be changed by the obtained seabed embedment in association with on-bottom stability, free span, and many others.