• Title/Summary/Keyword: Pipelines

Search Result 828, Processing Time 0.023 seconds

Applications of fiber optic sensors in civil engineering

  • Deng, Lu;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.577-596
    • /
    • 2007
  • Recent development of fiber optic sensor technology has provided an excellent choice for civil engineers for performance monitoring of civil infrastructures. Fiber optic sensors have the advantages of small dimensions, good resolution and accuracy, as well as excellent ability to transmit signal at long distances. They are also immune to electromagnetic and radio frequency interference and may incorporate a series of interrogated sensors multiplexed along a single fiber. These advantages make fiber optic sensors a better method than traditional damage detection methods and devices to some extent. This paper provides a review of recent developments in fiber optic sensor technology as well as some applications of fiber optic sensors to the performance monitoring of civil infrastructures such as buildings, bridges, pavements, dams, pipelines, tunnels, piles, etc. Existing problems of fiber optic sensors with their applications to civil structural performance monitoring are also discussed.

Comprehensive energy analysis of natural gas transportation in molecules or in electricity

  • Udaeta, Miguel E.M.;Rigolin, Pascoal H.C.;Burani, Geraldo F.;Galvao, Luiz C.R.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.61-72
    • /
    • 2014
  • This paper's aim is to do a global evaluation (considering four dimensions: technical-economic, environmental, social and political) in the ways of natural gas transportation (gas pipelines, GNL and GTL) and electric transmission, in order to supply the energy demands of Mato Grosso do Sul, a brazilian state. The transport ways had been compared between itself using a software of decision taking (Decision Lens Suite), which determined a better way for transporting natural gas in this case. In a generalized manner the gas pipeline is the best way of transporting natural gas, therefore it takes advantage in the majority of the analyzed dimensions.

Remote structural health monitoring systems for next generation SCADA

  • Kim, Sehwan;Torbol, Marco;Chou, Pai H.
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.511-531
    • /
    • 2013
  • Recent advances in low-cost remote monitoring systems have made it possible and practical to perform structural health monitoring (SHM) on a large scale. However, it is difficult for a single remote monitoring system to cover a wide range of SHM applications due to the amount of specialization required. For the remote monitoring system to be flexible, sustainable, and robust, this article introduces a new cost-effective, advanced remote monitoring and inspection system named DuraMote that can serve as a next generation supervisory control and data acquisition (SCADA) system for civil infrastructure systems. To evaluate the performance of DuraMote, we conduct experiments at two representative counterpart sites: a bridge and water pipelines. The objectives of this article are to improve upon the existing SCADA by integrating the remote monitoring system (i.e., DuraMote), to describe a prototype SCADA for civil engineering structures, and to validate its effectiveness with long-term field deployment results.

Scanning Electron Microscopic Study of Slime Formations in a Water Injection Station of Oil India Limited in Assam, India

  • Bhagobaty, Ranjan K.;Purohit, S.;Nihalani, M.C.
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.249-253
    • /
    • 2015
  • Microorganisms specifically groups of bacteria exhibiting physiological activities of production of acids are a major cause of concern because of their ability to induce corrosion in oil field pipelines and metal systems involved in water handling. Water Injection Stations as a means of secondary recovery from existing oil producing reservoirs, are often employed in most upstream oil and gas industries to ensure replenishment of voidage, maintenance of reservoir pressure and optimization of crude emulsion throughput. In the present study, scanning electron microscopy of macroscopic orange coloured slime formations sampled from leaking valves on the flow-lines of a Water Injection Stations of Oil India Limited revealed the presence of filamentous bacterial mats in association with diatoms. The species composition of the acidic slime formations from the sampled locations reveal the possible role of acid producing iron oxidizing bacteria (IOB) like Acidithiobacillus ferrooxidans in association with Gomphonema sp. in creating conditions for bio-corrosion.

Long Range Cylindrically Guided Ultrasonic Wave Technique for Inspection

  • Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.364-371
    • /
    • 2003
  • In this paper, a review of the current status, on the use of long range cylindrically guided wave modes, and their interaction with cracks and corrosion damage in pipe-like structures will be discussed. Applications of cylindrically guided ultrasonic wave modes have been developed for inspection of corrosion damage in pipelines at chemical plants, flow-accelerated corrosion damage (wall thinning) in feedwater piping, and circumferential stress corrosion cracks in PWR steam generator tubes. It has been demonstrated that this inspection technique can be employed on a variety of piping geometries (diameters from 1 in. to 3 ft, and wall thickness from 0.1 to 6 in.) and a propagation distance of 100 meters or more is sometimes feasible. This technique can also be used in the inspection of inaccessible or buried regions of pipes and tubes.

Development of the automatic tunneling algorithm based on fuzzy logic for the microtunneling system

  • Han, Jeong-Su;Do, Jun-Hyeong;Zeungnam Bien;Janghyun Nam;Park, Taedong;Park, Kwang-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.676-678
    • /
    • 2003
  • Microtunneling techniques play a crucial role in the construction of pipelines. This paper shows the automatic tunneling algorithm of microtunneling system using fuzzy logic technology to assist operators to assure the quality of microtunneling construction. To have effective output value of fuzzy controller, we slightly modified the conventional defuzzification methods. The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

  • PDF

Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (I) (해수환경중 캐비테이션 침식 -부식 하에서의 응력부식균열거동(I))

  • 안석환;임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.132-138
    • /
    • 2000
  • The effect of fluid flow on corrosion and erosion-corrosion of metal is a well-recognized phenomenon in pipelines and machinery equipment, and so on. Not only are fluid hydrodynamics important, but also the corrosiveness of the process or production stream affects the corrosion system. Recent research demonstrates that it is possible to erosion-corrosion(E/C) phenomena in terms of hydrodynamics, electrochemical corrosion kinetics and film growth/removal phenomena. Stress corrosion cracking behavior under cavitation erosion-corrosion of mild steel(SS41) was investigated of base metal and weldment under loaded stress. Main result obtained are as follows : 1) The cavitation erosion sensitivity of base metal affected weight loss is more susceptive than heat affected zone, 2) The corrosion sensitivity affected weight loss of welding heat cycle is less susceptive on stress corrosion under cavitation erosion-corrosion than stress corrosion.

  • PDF

Application of Long Gauge Fiber Optic Sensors to Construction Engineering Structures (장대 광변형 센서의 건설 구조물 적용)

  • 로드테니슨;안명운;김상환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10c
    • /
    • pp.61-78
    • /
    • 2001
  • Various kind of fiber optic gauge sensors are available that can be bonded to civil engineering structures such as bridges, dams, tunnels and pipelines. A new fiber optic long gauge has significant advantages over other fiber optic sensors. These gauges can vary in length from less than 10 cm up to 30 m and provide the structural engineer with accurate measurements of displacement. These displacements can be converted to strains by dividing the measurement by the long gauge length. Using new optical technology, the long gauge instrument developed by FOX-TEK can choose max. 30 meters of gauge length so as to measure the very early stress/strain correlation curve. And this gauge length to be extended up to 100 meter in 2002.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

Position Control of Hydraulic Motor-Load System using Matlab (Matlab을 이용한 유압모터-부하계의 위치제어)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.76-83
    • /
    • 2004
  • The purpose of this paper is to find an effective control system for a hydraulic motor-load system using matlab. The Hydraulic control system consists of a hydraulic pump, a hydraulic proportional control valve, hydraulic pipelines, a hydraulic motor and a load system. The simulation models were verified by comparing the simulation results with measured data from the real hydraulic proportional position control system. In order to compensate the nonlinear friction characteristics in a hydraulic motor-load system, a discrete time PD controller and Friction torque observer has been applied.