• Title/Summary/Keyword: Pipeline Structure

Search Result 271, Processing Time 0.026 seconds

Design of a Pipeline Processor for the Automated ECG Diagnosis in Real Time (실시간 심전도 자동진단을 위한 파이프라인 프로세서의 설계)

  • 이경중;윤형로;이명호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1217-1226
    • /
    • 1989
  • This paper describes a design of hardware system for real time automatic diagnosis of ECG arrhythmia based on pipeline processor consisting of three microcomputer. ECG data is acquisited by 12 bit A/D converter with hardware QRS triggered detector. Four diagnostic parameters-heart rate, morpholigy, axis, and ST segment-are used for the classification and the diagnosis of arrhythmia. The functions of the main CPU were distributed and processed with three microcomputers. Therefore the effective data process and the real time process using microcomputer can be obtained. The interconnection structure consisting of two common memory unit is designed to decrease the delay time caused by data transfer between processors and be which the delay time can be taken 1% of one clock period.

  • PDF

Design of Pipeline Processor for ECG Feature Extraction (ECG 특징추출을 위한 파이프라인 프로세서의 설계)

  • 이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 1988
  • This paper describes the design of a hardware systenl for ECG feature extraction based on pipeline processor consistinsf of three microcomputers. ECG data is acquisited by 12 bit A/D converter with hardware QRS triggered detector. Four diagnostic parameters parameters-heart rate, morPhology, axis, and 57 segment-are used for the classification and the diagnosis of arrhythmia. The functions of the main CPU were distributed and processed with three microcomputers. Therefore the effective data process and the real time process using microcomputer can be obtained. The interconnection structure consisting of two common memory units is designed to decrease the delay time caused by data transfer between processors and designed by which the delay time can be taken Loye of one clock period.

  • PDF

A design of pipeline processor for real time ECG process (실시간 심전도 처리를 위한 파이프라인 프로세서의 설계)

  • Lee, Kyoung-Joong;Lee, Yoon-Sun;Yoon, Hyoung-Ro;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.731-733
    • /
    • 1988
  • This paper describes a design of hardware system for real time automatic diagnosis of ECG arrhythmia based on pipeline processor consisting of the three microcomputer. ECG data is acquisited by 12 bit A/D converter with hardware QRS triggered detector. Four diagnostic parameters - heart rate, morphology, axis, and ST segment - are used for the classification and the diagnosis of arrhythmia. The functions of the main CPU were distributed and processed with three microcomputers. There-fore the effective data process and the real time process using microcomputer can be obtained. The interconnection structure consisting of two common memory units is designed to decrease the delay time caused by data transfer between processors and by which the delay time can be taken 1 % of one clock period.

  • PDF

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves (자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법)

  • Park, Seung Hee;Kim, Dong Jin;Lee, Chang Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2011
  • There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors (압전센서를 사용한 배관 구조물의 실시간 건전성 평가)

  • Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2010
  • Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.

A Design and Implementation for Dynamic Relocate Algorithm Using the Binary Tree Structure (이진트리구조를 이용한 동적 재배치 알고리즘 설계 및 구현)

  • 최강희
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.827-836
    • /
    • 2001
  • Data is represented by file structure in Computer System. But the file size is to be larger, it is hard to control and transmit. Therefore, in recent years, many researchers have developed new algorithms for the data compression. And now, we introduce a new Dynamic Compression Technique, making up for the weaknesses of huffman's. The huffman compression technique has two weaknesses. The first, it needs two steps of reading, one for acquiring character frequency and the other for real compression. The second, low compression rate caused by storing tree information. These weaknesses can be solved by our new Dynamic Relocatable Method, reducing the reading pass by relocating data file to dynamic form, and then storing tree information from pipeline structure. The first, it needs two steps of reading, one for acquiring character frequency and the other for real compression. The second, low compression rate caused by storing tree information. These weaknesses can be solved by our new Dynamic Relocatable Method, reducing the reading pass by relocating data file to dynamic form, and then storing tree information from pipeline structure.

  • PDF

Study on Correlation between Large Earthquake-Induced Underground Structure Uplift and Geological Settings (대지진에 의한 지하구조물 부상과 지질학적 특성의 상관성 연구)

  • Kang, Gi-Chun;Kim, Ji-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • During the 2004 Niigata-ken Chuetsu, Japan, earthquake, more than 1,450 underground structures, known as sewer manhole, were uplifted up to 1.5m in Nagaoka and Ojiya city. The uplift damage can be a serious matter because they not only hinder the flow of wastewater systems, as a part of lifeline systems, but also disturb traffic flows. For restoration works, an open-cut investigation of damaged wastewater system was conducted by the Nagaoka city government. The results from the investigation compiled valuable data sets for buried pipeline damage due to earthquakes. In the present study, the factors affecting the uplift amount of the underground structure is investigated by using the data sets which include locations of damaged sections and inclination of pipeline before and after the earthquake and the SPT borehole logs in the affected area. Correlation analysis between the underground structure uplift and the geological settings in the affected area revealed that ground water depth and original subsoil, including thickness of clay layer, SPT N-value and fill thickness are the key parameters for the uplift phenomenon.

Low-Power Radix-4 butterfly structure for OFDM FFT (OFDM FFT용 저전력 Radix-4 나비연산기 구조)

  • Kim, Do-Han;Kim, Bee-Chul;Hur, Eun-Sung;Lee, Won-Sang;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.13-14
    • /
    • 2006
  • In this paper, an efficient butterfly structure for Radix-4 FFT algorithm using DA(Distributed Arithmetic) is proposed. It is shown that DA can be efficiently used in twiddle factor calculation of the Radix-4 FFT algorithm. The Verilog-HDL coding results for the proposed DA butterfly structure show 61.02% cell area reduction comparison with those of the conventional multiplier butterfly structure. Furthermore, the 64-point Radix-4 pipeline structure using the proposed butterfly and delay commutators is compared with other conventional structures. Implementation coding results show 46.1% cell area reduction.

  • PDF

Design and Implementation of Asynchronous Circuits using Pseudo-NMOS NCL Gates (의사 NMOS 형태의 NCL 게이트를 사용한 고속의 비동기 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • This Paper Proposes a New High-speed Design Methodology for Delay Insensitive Asynchronous Circuits Combining with a Pseudo-NMOS Structure used for High Performance in Synchronous Circuits. Null Convention Logic(NCL) of Conventional Delay-Insensitive Asynchronous Design Methodologies has many Advantages of High Reliability, Low Power Consumption, and Easy Design Reuses not Dependant on Semiconductor Technology. However. the Conventional NCL Gates has a Complicated Stack Structure, so it Suffers from Increased Circuit Delay. Therefore, a New NCL Gates and its Pipeline Structure for High Performance, and the Proposed Methodology has been Designed and Evaluated by a $4{\times}4$ Multiplier Designed using SK-Hynix 0.18 um CMOS Technology. The Experimental Results are Compared with a Conventional NCL in Terms of Power and Delay and shows that the Propagation Delay of the Proposed Multiplier is Reduced by 85% Compared with the Conventional NCL Multiplier.