DOI QR코드

DOI QR Code

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors

압전센서를 사용한 배관 구조물의 실시간 건전성 평가

  • 김주원 (성균관대학교 u-City공학과) ;
  • 이창길 (성균관대학교 건설환경시스템공학과) ;
  • 박승희 (성균관대학교 사회환경시스템 공학과/u-City 공학과)
  • Received : 2010.06.09
  • Accepted : 2010.08.23
  • Published : 2010.11.30

Abstract

Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.

가스관, 송유관 등의 배관구조물은 주요자원의 수송을 책임지는 핵심 지하시설물 중 하나이다. 이들은 사고 및 자연적인 노후화로 인해 국부적인 손상이 발생할 위험에 노출 되어있다. 하지만 대부분의 배관구조물은 지하의 좁은 공간에 복잡하게 연결되어있기 때문에 구조물의 건전성을 지속적으로 모니터링 하는데 어려움이 있었다. 이러한 지금까지 관리방식의 한계점을 극복하기 위해 최근 유비쿼터스 센서 네트워크 기반의 온라인 방식의 상시적 구조물 건전성 평가방법에 대한 연구가 활발히 이뤄지고 있다. 본 논문에서는 전기-역학적 임피던스 기반의 실시간 배관 구조물 건전성 평가방법에 대하여 연구하였다. 배관 구조물에 발생하기 쉬운 볼트 풀림과 균열의 두 가지 국부손상을 가정하였고 압전효과를 가진 PZT와 MFC 센서를 이용하여 구조물의 상태에 따른 임피던스를 계측하여 손상탐색 실험을 수행하였다. 하나의 센서로 가진과 센싱을 동시에 수행할 수 있는 저비용 셀프센싱 기법을 사용하였고 배관 상태에 대한 객관적인 판단을 위해 손상지수인 RMSD 값을 사용하여 계측된 신호를 이용하여 손상의 정도를 정량화 시켰다. 손상여부의 판단을 위해 일반 극치 분포를 이용하여 최적화된 통계적인 정상상태의 임계값을 설정하였다. 위와 같은 실험적 연구과정을 통해 제안된 실시간 배관 구조물 건전성 평가 방법의 타당성과 효율성을 확인해 보았다.

Keywords

References

  1. Bhalla, S., Naidu, A.S.K. and Soh, C.K., "Influence of structure-actuator interactions and temperature on piezoelectric mechatronic signatures for NDE", Proc. ISSS-SPIE 2002 International Conference on Smart Materials Structures and Systems, 5062, 2002.
  2. Bhalla, S. and Soh, C.K., "High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages", NDT&E International, vol. 37, No. 1, 2004, pp.23-33. https://doi.org/10.1016/j.ndteint.2003.07.001
  3. Coles, S., An Introduction to Statistical Modeling of Extreme Values, Springer, Verlag. 2001. pp.47-49.
  4. Giurgiutiu, V., Zagrai, A. and Bao, J.J., "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring", International Journal of Structural Health Monitoring, vol. 1, 2002, pp.41-61. https://doi.org/10.1177/147592170200100104
  5. Giurgiutiu, V., Zagrai, A. and Bao, J.J., "Damage identification in aging aircraft structures with piezoelectric wafer active sensors", Journal of Intelligent Material Systems and Structures, vol. 15, No. 9-10, 2004, pp.673-688. https://doi.org/10.1177/1045389X04038051
  6. Ihn, J.B. and Chang, F.K., "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/ actuator network: II. Validation using riveted joints and repair patches", Smart Materials and Structures, vol. 13, No. 3, 2004, pp.621-630. https://doi.org/10.1088/0964-1726/13/3/021
  7. Lee, S.J and Sohn, H., "Active self-sensing scheme development for structural health monitoring", Smart Materials and Structures, vol. 15, No. 6, 2006, pp.1734-1746. https://doi.org/10.1088/0964-1726/15/6/028
  8. Lee, S.J. and Sohn, H., "Active self-sensing module for sensor diagnosis and structural health monitoring", Proc. 3rd European Workshop on Structural Health Monitoring, Granada, Spain, 2006.
  9. Liang, C., Sun, F.P. and Rogers, C.A., "Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", Journal of Intelligent Material Systems and Structures, vol. 5, No. 1, 1994, pp.12-20. https://doi.org/10.1177/1045389X9400500102
  10. Park, G., Cudney, H. and Inman, D.J., "Impedance-based health monitoring of civil structural components", American Society of Civil Engineers, vol. 6, No. 4, 2000, pp.153-160.
  11. Park, G., Sohn, H., Farrar, C.R. and Inman, D.J., "Overview of piezoelectric impedance-based health monitoring and path forward", The Shock and Vibration Digest, vol. 35, No. 6, 2003, pp.451-463. https://doi.org/10.1177/05831024030356001
  12. Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N., "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", Journal of Vibration and Acoustics, vol. 128, No. 8, 2006, pp.469-476. https://doi.org/10.1115/1.2202157
  13. Park, S., Yun, C.B., Roh, Y. and Lee, J.J., "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Structures and Systems, vol. 1, No. 4, 2005, pp.339-353. https://doi.org/10.12989/sss.2005.1.4.339
  14. Park S., Yun, C.B., Roh, Y. and Lee, J.J., "PZT-based active damage detection techniques for steel bridge components", Smart Materials and Structures, vol. 15, No. 4, 2006, pp.957-966. https://doi.org/10.1088/0964-1726/15/4/009
  15. Park, S., Grisso, B.L., Inman, D.J. and Yun, C.-B., "MFC-based structural health monitoring using a miniaturized impedance measuring chip for corrosion detection", Reserch in Nondestructive Evaluation, vol. 18, No. 2, 2007, pp.139-150. https://doi.org/10.1080/09349840701279937
  16. Peairs, D.M., Park, G., Inman, D.J., "Low Cost Impedance Monitoring Using Smart Materials", Proceeding of the First European Workshop on Structural Health Monitoring, Ecole Normale Superieure, Paris, France, July 10-12, 2002.
  17. Peairs, D.M., Tarazaga, P.A., and Inman, D.J., "A study of the Correlation between PZT and MFC Resonance Peaks and Damage Detection Frequency Intervals Using the Impedance Method", International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2006.
  18. Wait, J.R., Park, G., Farrar, C.R., "Integrated structural health assessment using piezoelectric active sensors", Shock and Vibration, vol. 12, No. 6, 2004, pp.389-405.