• 제목/요약/키워드: Pipe thickness

검색결과 441건 처리시간 0.027초

유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서 개선 (Improvement of an Ultrasonic Transducer for Measuring Both Flow Velocity and Pipe Thickness)

  • 김주완;김진오
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.148-156
    • /
    • 2016
  • The paper deals with improvement of a piezoelectric ultrasonic transducer for measuring both pipe thickness and flow velocity. The transducer structure is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer invented earlier for measuring flow velocity and pipe thickness had an advantage of including only one piezoelectric disc, but for the thickness measurement the ultrasonic wave had to be reflected twice in a wedge material to be transmitted vertically to a pipe, and thus the wave signal was too weak. The transducer has been improved to transmit waves for thickness measurement vertically to a pipe without any prior reflection by electrically connecting two piezoelectric discs, one for flow velocity and the other for pipe thickness measurement. By comparing the measured results of specimen thickness with the improved transducer and conventional transducers, the accuracies of the improved one have been evaluated in the pipe thickness measurements.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

정밀 파이프 성형을 위한 벤딩 공정 개발에 관한 연구 (A Study on the Bending Process for Precision Pipe Forming)

  • 김현진;이춘만
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.58-65
    • /
    • 2007
  • The arbitrarily-bended pipe is widely used in a heat exchanger system. Thus, the pipe bending process has important role in performance and productivity of heat exchanger system. The purpose of this study is to investigate the bending process for manufacturing of sound pipe. And, the spring-back effect and the variation of pipe thickness should be controlled effectively. The change of spring-back ratio and the thickness variation of pipe according to the change of bending radius, bending angle and pipe thickness are analyzed by FEM analysis. The analytic results are compared with the experimental data, accordingly the results show good agreement. The method of the analysis can be applied for manufacturing of precision bended pipe.

파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석 (Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load)

  • 최명기;박종근
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

내압과 굽힘하중하에서 감육배관의 국부허용두께 평가 (Evaluation of Local Allowable Wall Thickness of Thinned Pipe Subjected to Internal Pressure and Bending Moment)

  • 김진원;박치용;김범년
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.81-88
    • /
    • 2001
  • This study proposed an analytical method to evaluate a local allowable wall thickness (LAWT) for locally thinned pipe subjected to internal pressure and bending moment. In this method, the stresses in the thinned region were calculated by finite element analysis and plastic collapse was applied as a failure criterion of thinned pipe. Using this method, LAWT for a simplified thinned pipe was evaluated with variation in axial extent of thinned area, and it was compared with allowable wall thickness provided by previous pipe wall thickness criteria. The results showed that the LAWT was lower, about 50%, than that calculated by construction code or ASME Code N-597, and it was higher, about 2 times, than that estimated by evaluation model based on pipe experiments. In addition, LAWT was decreased with increasing axial extent of thinned area and saturated with further increase in axial extent. And, the variation in LAWT with axial extent of thinned area depended on type of load, especially a magnitude of bending moment, considering in the evaluation.

지반 조건을 고려한 최적강관두께의 결정 (The Determination of Optimal Steel Pipe Wall Thickness Considering Ground Condition)

  • 박재성;오병동;이호진
    • 한국지반환경공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.11-15
    • /
    • 2008
  • 대구경 상수도 관로는 제작 및 경제성 요인에 의해 주로 강관을 사용해 오고 있다. 상수도시설기준(건교부, 1992)에 강관두께를 결정하는 기준을 제시하고 있다. 그러나, 이 기준에는 강관 두께를 결정하는 체계적인 기준이 없다. 그래서, 매설관로에는 적용이 부적합한 Stewart 공식을 적용하여 강관두께를 결정해 왔다. 개정된 상수도시설기준(환경부, 1997) 에 부합되도록 지반여건과 각종응력을 고려하여 강관두께를 산정하였다. 그 결과를 기존의 방법에 의해 산정된 결과와 비교 검토한 후 최적 강관두께를 결정하는 방법을 제시하였다.

  • PDF

에너지 성능 기반의 기계설비배관 단열기준 개선을 위한 연구 (The Study to Improve the Insulation Standards for Mechanical Pipes based on Energy Performance)

  • 윤희원;류형규
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.28-35
    • /
    • 2021
  • The need for zero-energy building is increasing as a means of actively responding to climate change. Since pipe insulation is a factor that minimizes heat loss of cooling and heating facilities, it is necessary to check pipe insulation standards and prepare improvement plans of preparation for certification of zero energy buildings. In this study, domestic pipe insulation standards were checked to prepare new insulation standards based on energy performance. Through the development of a pipe insulation calculation program, the heat loss according to the insulation thickness of the piping for mechanical facilities was compared and reviewed. As a result, applying the insulation thickness of the KCS standard for the same conditions increased the heat loss by an average of 10% compared to the ASHRAE standard. For this reason, it is necessary to revise the pipe insulation thickness standard in consideration of heat loss due to thermal conductivity and pipe insulation thickness. Using the program in this paper, it is possible to design pipe insulation based on energy performance and help to determine the standard for pipe insulation thickness.

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.

군속도 변화를 이용한 배관 두께 측정 (Estimation of the Pipe Thickness using the Variation of the Group Velocity)

  • 한승희;황종명;이장명
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.32-40
    • /
    • 2010
  • This paper proposes the technique of estimating the pipe thickness using the measured group velocity. To measure the group velocity from the accelerometer data in the frequency domain, Wigner-Ville distribution is utilized, which interprets the waveform of the shock wave. Using this measured group velocity, this paper proposes the technique to estimate the thickness of pipes with the impact on the pipe. The group velocity is estimated by the modeling correlation between the group velocity and the thickness of the pipe based on the propagation velocities. The correlation model between thickness and group velocity has been proved through the real experiments. The measured group velocity in the frequency-domain is the maximum at the center frequency of the bending waves in the modeling of the group velocity. In addition to these, a smoothing technique for analyzing lamb wave Wigner-Ville distribution has been introduced to improve the reliability of the data acquisition.

플랜트에서 가치공학 개념을 적용한 대관경 배관두께 선정에 관한 연구 (Selection of the Large Diameter Pipe Wall Thickness by Value Engineering for a Plant)

  • 최가영;유호선;문승재
    • 플랜트 저널
    • /
    • 제7권3호
    • /
    • pp.65-73
    • /
    • 2011
  • This research has suggested a method to select pipe wall thickness by application of the value engineering to reduce the cost and quantity that are major part of construction materials. This research shows that the application of value engineering reduces the cost of piping materials by optimizing pipe wall thickness while maintaining process flow date of design pressure and design temperature. Based on this knowledge, the application of the value engineering will lead to the cost reduction and quantity reduction by effective selection of pipe wall thickness. The application of the value engineering will help the EPC companies to win a contract in the overseas plant market.

  • PDF