• Title/Summary/Keyword: Pipe leakage

Search Result 219, Processing Time 0.028 seconds

A study on the characteristic of the Groove corrosion of ERW carbon steel according to water speed (유속에 따른 ERW 탄소강관의 홈부식 특성에 관한 연구)

  • Kim, Jae-Seong;Lee, Young-Ki;Kim, Yong;Lee, Bo-Young
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.82-82
    • /
    • 2009
  • Although leakage at a low carbon steel pipe made by electrical resistance welding(ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the corrosion test carried out using the ERW carbon steel pipe by changed the water speed and heat input in a month. The level of dissolved oxygen is maintained 5~5.5mg/l(amount of dissolved oxygen in tap water). The water speed for corrosion test is 1m/s, 2m/s, 3m/s. As the results, grooving corrosion rate is increased cause by water speed in the pipe. In the case of the ERW pipe with more heat input, grooving corrosion rate is decreased. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion reistance of the ERW pipe.

  • PDF

A Study of Failure Examples for Refrigerant Gas Leakage in Automotive Air Conditioner System (자동차 에어컨 냉매 가스 누설에 대한 고장사례 고찰)

  • Lee, Il Kwon;Kook, Chang Ho;Moon, Hak Hoon;You, Chang Bae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2016
  • This paper is to analyze and study the failure examples of refrigerant gas in automotive air conditioner. The first example, the air conditioner compressor continually operated that the refrigerant was leaked in air conditioner system. By lubrication shortage, the piston was partially sticked on cylinder of air conditioner compressor inner part. This was caused the phenomenon of engine operation trouble by load increasing with engine rpm variation during engine running. The second example, it sought the fact that the air conditioner refrigerant gas was leaked from air conditioner compressor to condenser high pressure pipe toward rear air conditioner checking with the lines of air conditioner. The third example, the refrigerant gas of air conditioner found that was leaked imperceptible from condenser inner by crack that was generated on the fins of air conditioner condenser. Therefore, the air conditioner system that maintain the air conditioner by decreasing the in-car temperature must meticulously manage to not leak the air conditioner refrigerant gas.

LEAK-BEFORE-BREAK ANALYSIS OF THERMALLY AGED NUCLEAR PIPE UNDER DIFFERENT BENDING MOMENTS

  • LV, XUMING;LI, SHILEI;ZHANG, HAILONG;WANG, YANLI;WANG, ZHAOXI;XUE, FEI;WANG, XITAO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.712-718
    • /
    • 2015
  • Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from $280^{\circ}C$ to $450^{\circ}C$. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elasticeplastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.

The Development and Introduction of External Corrosion Direct Assessment Measures for Urban Gas Pipelines (외면부식 직접평가법 개발 및 국내 도입 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Yoon, Yung-Ki;Lim, Ho-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 2014
  • To minimize the risk of corrosion on buried pipeline and to maximize the efficiency of cathodic protection, various indirect inspection techniques have been used for decades. In the United States, 49 CFR has regulated the external corrosion direct assessment for buried pipelines. In Korea, there is no provision for external corrosion direct assessment but there is only, according to the KGS Code, provision that if the survey of the defects of buried pipeline and the leakage test for the pipe were conducted, it is deemed to leakage inspection. We, therefore, have suggested external corrosion direct assessment method appropriate to domestic status through the survey of the regulations and standards of UK and the USA and the investigation of domestic situation on coating damage detection method. The proposed external corrosion direct evaluation method was used as the basis when introducing the precision safety diagnosis regulation for the medium-pressure pipe in Korea.

Characterization of Repairing PVC profile for Trenchless Sewer Pipeline (비굴착 하수관로용 PVC 프로파일 보수재 특성 평가)

  • Park, Joon-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4977-4983
    • /
    • 2015
  • The full depth excavation induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are PVC strip and then the lab tests were followed by Korean Standard. We will treat the structure safety and pipe integrity of PVC profile more excellent than the profile have application to SPR. There is no side-effect to process and to satisfy the criteria of tensile strength, impact strength and softening temperature. The profile with resin adhesive showed no leakage of water at specific pressure.

A Ground Penetrating Radar Detection of Buried Cavities and Pipes and Development of an Image Processing Program (지반 공동 및 매립관의 지반 투과 레이더 탐사 및 이미지 처리 프로그램 개발)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • Many ground subsidence accidents have happened in Korea. The accident was caused by the subsidence and leakage of the deteriorated sewage pipe. This study aims to establish the empirical data of the ground penetration radar(GPR) detection for ground subsidence. A test bed was also manufactured for the same purpose. The GPR detection variables are embedment depth and horizontal distance of embedded cast iron pipe and expanded polystyrene(EPS). From the detection results, the EPS embedded by a depth of 1.5m was difficult for detection. The EPS closely embedded to the cast iron pipe within a 0.5m distance had a very strong cast iron pipe signal. Therefore, the detection was impossible. This study developed an image processing program, called the GPR image processing program(GPRiPP), to process the GPR detection results. Its major function is the gain function, which amplifies the wiggle wave signal. Compared to the existing programs, the GPRiPP is capable of showing a similar image processing performance.

An Applicability Estimation of Plastic Vertical Pipes using Electric Fusion Fittings through Measurement (실측을 통한 융착식 플라스틱 입상배관 성능 평가)

  • Park, Yool;Ahn, Young-Chull;Kim, Hyun-Dae;Kim, Jeong-Su;Goark, You-Shik;Kim, Young-Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.595-599
    • /
    • 2013
  • The pipes used in buildings are generally categorized into metallic or plastic materials. Metal pipes, such as copper and stainless steel pipes, are mainly used for water and hot water supply, and for the heating system. However, plastic pipes made of polyethylene and cross-linked polyethylene are used for floor heating, water drainage, and air vent systems. Usually, plastic pipes have thermal demerits, such as high linear expansion coefficients and bending phenomenon by hot water, although the pipes have several merits of light weight, low price, low thermal conductivity, and the comparatively high workability of metal pipes. Therefore, if those kind of demerits are overcome, plastic pipes can be easily accepted for hot water systems. This research is aimed to evaluate the applicability for vertical heating pipes of a plastic pipe system consisting of electric fusion fitting of a conductive carbon compound and propylene random glass fiber pipe, through measurement of the expansion rate and leakage in summer and winter seasons, in the apartment construction field.

Leak and Leak Point Prediction by Detecting Negative Pressure Wave in High Pressure Piping System (저압확장파 검출을 통한 배관 누출 및 누출위치 예측)

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Dong-Hyuk;Kim, Young-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods, which have been recently suggested on pipeline network. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using CFD++, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave and verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. For the application of long pipe line system. The method of 1-dimensional analysis has been suggested and verified with results of CFD++.

  • PDF

Development of a System Dynamics Model to Support the Decision Making Processes in the Operation and Management of Water Supply Systems (상수도 시스템의 운영 및 유지관리 의사결정 지원을 위한 시스템다이내믹스 모형의 개발)

  • Park, Su-Wan;Kim, Kyu-Lee;Kim, Bong-Jae;Lim, Ki-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.609-623
    • /
    • 2010
  • In this paper the feedback loop mechanisms that are inherent in the management of water supply systems were identified based on the system dynamics modeling methodology. As a result, a system dynamics (SD) computer simulation model that can be used to aid efficient management of water supply systems was developed. The developed SD model can be used to predict operating conditions of water supply systems including the effects of pipe maintenance on the entire system. The developed model is consisted of water supply, pipe maintenance and water supply business finance model. The operation and maintenance data from a study water supply system were used to verify the model and to predict the past and future operating conditions of the system. The policy leverage that greatly affects the operating condition was evaluated by the sensitivity analyses for the operational indices due to changes in the exogenous variables. It was found that while the pipe maintenance related exogenous variables had great effects on the leakage and conditions of pipes, they did not have great effects on the major operational indices such as revenue water ratio. It is considered that the social costs due to leaks and pipe breaks and the corresponding mechanism of propagation of the costs must be modeled to better evaluate the effects of pipe maintenance on the operational conditions of water supply systems.

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.