• Title/Summary/Keyword: Pipe end conditions

Search Result 44, Processing Time 0.028 seconds

The Effects of Centrifugal Casting Conditions on the Structure and Mechanical Properties in Fabrication Development of Super Heat-Resisting Steel Pipe of HP Alloy Modified with Nb (Nb을 첨가한 HP 초내열강관의 제조개발에 필요한 원심주조 조건이 조직과 기계적성질에 미치는 효과)

  • Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.566-575
    • /
    • 1994
  • The effects of varying the pouring temperature and the die preheating temperature in producing centrifugally cast HP alloy modified with Nb was evaluated on the basis of the resultant macrostructure, microstructure and hardness of these castings. Increased die preheating temperatures and pouring temperatures resulted in an increase in the thickness of the columnar dendritic zone, the primary and secondary dendrite arm spacing and the thickness of the zone of porosity at the casting I.D.(inner diameter). Lower die preheating temperature and pouring temperatures result in increased grain fineness and an increased zone of equiaxed grains. A higher hardness was achieved toward the casting O.D.(outer diameter) compared to the casting I.D., attributable to alloy segregation toward the casting I.D. and segregation differences resulting from reduced solidification cooling rates toward the casting I.D. Also, a higher hardness was realized at the cold end of the casting attributed to a more uniform distribution of carbides.

  • PDF

The Analysis of Fluid Pressure in Polybutylene Piping System (PB 배관에서의 유체압력에 관한 연구)

  • Lee Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene piping system. Experiments were conducted under the following conditions: initial pressure $1\~5$ bar, flow velocity $\~0.5-3.0m/s$ and water temperature $25^{\circ}C$. Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. We also found that the maximum pressure rise and the pressure history depended on not only initial steady pressure but also flow velocity.

A Study on the Evaluation of Engine Motion for the Design in Automobile Exhaust System (자동차 배기계 설계를 위한 엔진운동변위 산출에 관한 연구)

  • 이완익;박경진;이권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • In the analysis of automobile exhaust system, the exciting forces from the engine determine the dynamic behavior of the system and the dynamic characteristics influence the riding quality. Therefore, the identification of the force in numeric value is quite important for the vibrational reduction. However, the value is difficult to obtain by experiments due to harsh conditions around the engine. In this research, an optimization technology is adopted to evaluate the exciting forces. An experimental method is conducted for the verification of the finite element modeling. Displacements on the end of the exhaust system are measured under the idling environment. cost function is set up to minimize the differences between the displacements of the numerical simulation and the experiment. Design variables are the components of the exciting forces. That is, optimization is utilized to estimate the forces with existing data. Excellent estimations have been calculated efficiently and the information is used again for the forced vibration of the exhaust system.

  • PDF

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Stability of Compression System with Pipeline Dynamics Model upon Pipeline Length Variation (관로 유동 모델의 관로 길이 변화에 따른 압축 시스템의 안정성)

  • Yi, Sangmin
    • Plant Journal
    • /
    • v.12 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • To model the compression system with more integrity, the pipeline dynamic model was applied to the compression system model. To combine the pipeline dynamic model and the compression system model, appropriate boundary conditions were selected on each end of connecting pipe with compressor, plenum and throttle valve. Simulation result illustrate the effect of pipeline dynamic model on the stability of compression system.

  • PDF

A Study on Inflow Rate According to Shape of Dual Structure Perforated Pipe Applied to Seawater Intake System (해수취수시스템에 적용된 2중구조 유공관의 형태에 따른 취수효율에 대한 연구)

  • Kim, Sooyoung;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.721-728
    • /
    • 2016
  • 97% of water on earth exists in the form of seawater. Therefore, the use of marine resources is one of the most important research issues at present. The use of seawater is expanding in various fields (seawater desalination, cooling water for nuclear power plants, deep seawater utilization, etc.). Seawater intake systems utilizing sand filters in order to take in clean seawater are being actively employed. For the intake pipe used in this system, assuring equal intake flows through the respective holes is very important to improve the efficiency of the intake and filtering process. In this study, we analyzed the efficiency of the dual structure perforated pipe used in the seawater intake system using 3D numerical simulations and the inflow rate according to the gap of the up holes. In the case of decreasing gaps in the up holes toward the pipe end, the variation of the total inflow rate was small in comparison with the other cases. However, the standard deviation of the inflow rate through the up holes was the lowest in this case. Also, stable flow occurred, which can improve the efficiency of the intake process. In the future, a sensitivity analysis of the various conditions should be performed based on the results of this study, in order to determine the factors influencing the efficiency, which can then be utilized to derive optimal designs suitable for specific environments.

A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes (진공관식 태양열 집열 튜브의 열성능 비교 분석)

  • Hyun, June-Ho;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Improvement of Infiltration Performance Measurement in BTL (Build-Transfer-Lease) Sewer Rehabilitation Projects - Focusing on Jeju Special Self-Governing Province - (하수관거정비 임대형민자사업에 있어 침입수 성과지표의 개선에 관한 연구 - 제주특별자치도를 중심으로 -)

  • Ko, Young-Nam;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1133-1143
    • /
    • 2016
  • The purpose of this study is to improve project performance analysis indicators for BTL sewer rehabilitation projects. Among the assessment indicators for BTL sewer rehabilitation projects, an infiltration assessment indicator is given a high score of 17.5 points as a single assessment item. This infiltration assessment indicator is assessed focusing on the amount of infiltration, and presently calculated according to 'Nighttime Domestic Flow Evaluation' method. However, this assessment indicator's failure to reflect the geological features of Jeju region is emerging as a problem in the operational stage. Thus, this study intended to compare and analyze the calculation result depending on the assessment indicators and the actual amount of infiltration, centering on Jeju region. To this end, this study analyzed the amount of infiltration in five areas of Jeju Province calculated according to 'Nighttime Domestic Flow Evaluation' method. Also, a complete enumeration survey was carried out about the conditions for actual infiltration occurrence. According to the results of this survey, ground water level is distributed lower than the level of sewer pipes. The results of a sewer pipe function test show there was no infiltration occurrence caused by sewer pipe defect. So, it is concluded that 'Nighttime Domestic Flow Evaluation' method, which is utilized for the current assessment indicator, is not appropriate to apply to Jeju region, and it is thought that there is a need to establish infiltration criteria specialized for Jeju region.

Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis (재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석)

  • Ryu, Hee Ryong;Lee, Eung Ho;Cho, Myeong Whan;Yu, In Ho;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.459-465
    • /
    • 2012
  • This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.