• Title/Summary/Keyword: Pipe bending

Search Result 290, Processing Time 0.027 seconds

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.

Model Tests on the Characteristics of Lateral Behavior of Steel Pipe Pile in Homogeneous and Nonhomogeneous Soil Conditions (균질 지반과 비균질 지반에서 강관 모형말뚝의 수평거동 특성에 관한 모형실험)

  • 김병탁;김영수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.153-166
    • /
    • 1998
  • This paper shows the results of a series of model tests on the behavior of steel pipe pile which is subjected to lateral and inclined loads in homogeneous and non-homogeneous Nak-dong River sands. Non-homogeneous soil consisted of two layers, upper and lower layer. The purpose of the present paper is to investigate the effect of ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer and inclined load on the behavior of single pile. These effects can be quantified only by the results of model tests. As a result. in non-homogeneous sand soil, it is shown that the lateral behavior depends upon the ratio of soil modules of upper layer to lower layer more than other factors. And it was found that the relationship between the deflection ratio of non-homogeneous sand to homogeneous sand and the ratio of lower layer height to embedded pile length can be fitted to exponential function of H/L by model tests results. For the inclined load applied, it is shown that the bending moment-depth relationship is not similar to the case of laterally loaded pile and the depth of maximum bending moment at relative density of 90% increases about 70% more than the pile only loaded laterally.

  • PDF

Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand (강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여)

  • 김영수;허노영
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-74
    • /
    • 1997
  • This paper shows the results of a series of model bests on the behavior of single steel pipe pile which is subjected to lateral load in Nak-dong river sand. The purpose of the present paper is to estimate the effect of Non -homogeneous soil, constraint condition of pile head, lateral load velocity, relative density of soil, embedded pile length, and flexural stiffness of pile on the behavior of single pile which is embedded in Nak-dong river strand. These effects can be quantined only by the results of model tests. The nonlinear responses of lateral loadieflection relationships are fitted to 2nd polynomial equations by model tests results. Also, the lateral load of a deflection, yield and ultimate lateral load max. bending moment, and yield bending moment can be expressed as exponential function in terms of relative density and deflection ratio. By comparing Brom's results with model results on the lateral ultimate load, it is found that short and long pile show the contrary results with each other. The contrary results are due to the smaller assumed soil reaction than the soil reaction of the Nakiong river sand at deep point. By comparing lateral behavior on the homogeneous soil with non-homogeneous soil, it is shown that lateral loadieflection relationship is very dependent on the upper relative density. This phenomenon is shown remarkably as the difference between upper and lower relative density increases.

  • PDF

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

An Experimental Study on the Mechanical Properties of Permeable Polymer Concrete (투수용 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.95-105
    • /
    • 1996
  • This study was performed to evaluate the mechanical properties of permeable polymer concrete using fillers and unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of 1, 663~ l, 892kg/$cm^3$, the weights of those concrete were decreased 18~28% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash filled permeable polymer concrete, it was increased 22% by compressive strength, 190% by tensile strength and 192% by bending strength than that of the normal cement concrete, respectively. 3. The external strength of permeable pipe was in the range of 3, 083~3, 793kg/m, the external strengths of those concrete were increased 2~26% than that of the normal cement concrete. Accordingly, these permeable polymer concrete pipe can be used to the members and structures which need external strength. 4. The static modulus of elasticity was in the range of $5.7{\times} 10^4 ~ 15.4{\times} 10{^4}kg/cm^2 $, which was approximately 35~64% of that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $83{\times} 10^3 ~ 211{\times} 10{^3}kg/cm^2 $, which was approximately Ins compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 22~45% than that of the static modulus. 6. The ultrasonic pulse velocity was in the range of 2, 584 ~ 3, 587m/sec, . which was showed about the same compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was in the range of$0.58~8.88 {\ell}/cm^2/hr$, , and it was larglely dependent upon the mixing ratio. These concrete can be used to the structures which need water permeability.

  • PDF

Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy (폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발)

  • Im, Hyeongwook;Kang, Tae June;Kim, Dae Weon;Kim, Yong Hyup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.1010-1015
    • /
    • 2012
  • In this study, a thin-film thermo-electrochemical cell that directly converts waste thermal energy into electrical energy was fabricated. Electrical conductivity of conducting carbon fiber, which was used as flexible electrode, was increased through coating of carbon nanotube, and resistance of the CNT-coated fiber electrode was not changed even after bending test with various curvatures. Maximum output power of the thermocell was increased quadratically with the temperature difference, and showed a value of about 2.5 mW/kg at temperature difference of $3.4^{\circ}C$. As a result of discharge test for 12 hours, it is confirmed that the cell can operates continuously. And thin-film thermocell wrapped around a pipe with hot liquid flowing within was demonstrated. Internal resistance of the cell was decreased with various curvature of heat pipe, and maximum output power was increased by 30 %. Therefore, the cell can be applied to various heat source.

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

Effect of Reference Loads on Fracture Mechanics Analysis of Surface Cracked Pipe Based on Reference Stress Method (참조응력법에 입각한 표면균열배관의 파괴역학 해석 -참조하중의 영향 분석-)

  • Shim, Do-Jun;Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.524-531
    • /
    • 2004
  • To investigate relevance of the definition of the reference stress to estimate J and $C^{*}$ for surface crack problems, this paper compares FE J and $C^{*}$ results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) the local limit load, (ii) the global limit load, (iii) the global limit load determined from the FE limit analysis, and (iv) the optimized reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and $^{*}$. Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and $^{*}$. The use of the FE global limit load gives overall non-conservative estimates of J and $^{*}$. The reference stress based on the optimised reference load gives overall accurate estimates of J and $^{*}$, compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given.

The Buckling Analysis of Stiffened Opening Plastes with Two Opposite Elastic Supports and Two Other Opposite Simply Supports Subjected to In-Plane Pure Bending (면내휨을 받는 2변단순지지 2변 탄성지지 유공 보강판의 좌굴해석)

  • 김일중;정동조;이용수
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.149-158
    • /
    • 1995
  • When hot-rolled wide flanges are used as vertical compressive or bending member, opening web are often to take a space for equipments of pipe or duct. The Web of hot-rolled wide flange steel with opening may be analyzed as a rectangular plate, subjected to in plane force, and the buckling load is governed by the ultimate force of web. The result of the theory showed close agreement with the result of the finite element analysis. It was also shown that the buckling loads of stiffened opening plates could be larger than those of the plate. The stiffened opening plates for the 4-side simply supported case showed more stiffening effect than the Two Opposite Elastic Supports and Two Other Opposite Simply Supports case. In this study, we proposed the effective opening sizes that buckling loads of stiffened opening plate could be greater than those of the plates.

  • PDF