• 제목/요약/키워드: Pipe Size Design

검색결과 126건 처리시간 0.03초

관로 청소 로봇의 최적 설계 (Optimal Mechanism Design of In-pipe Cleaning Robot)

  • 정창두;정원지;안진수;신기수;권순재
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

GENESIS 7.0을 이용한 전동차용 크로스 빔의 치수와 형상 최적화에 관한 연구 (A Study on the Size and the Shape Optimization of Cross Beam for Electric Vehicle using GENESIS 7.0)

  • 전형용
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.129-136
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and demand auxiliary equipment such as air pipe, electric wire pipe and gas pipe. Especially, lightweight vehicle body is salutary to save operating costs and fuel consumption. Cross beam supports the weight of passenger and electrical equipments and account for the most of weight of vehicle body. Therefore this study performs the size and the shape optimization of crossbeam for electric vehicle using GENESIS 7.0 and presents the effect of mass reduction and the shape of hole in cross beam.

부차 손실을 고려한 상용관로의 간편 설계 (Simplified Design of Commercial Pipes with Considering Secondary Losses)

  • 유동훈;정원국
    • 한국수자원학회논문집
    • /
    • 제34권1호
    • /
    • pp.31-43
    • /
    • 2001
  • 상용관로에서의 마찰 계수는 관의 종류, 관의 크기에 따라 아주 폭넓게 변한다. 지금까지 여러 연구자들에 의하여 개발된 방법으로 정밀하게 여러 가지 마찰 계수를 산정할 수 있지만 일반적으로 간단한 경우의 해를 구하기 위해서는 반복적인 시산이 요구된다. 지수형 산정식은 양해적으로 그 해를 도출할 수 있으므로 직접적으로 해를 구하는 기법의 발전을 위하여 많이 적용되어 지고 있다. Hazen-Williams 방정식은 여러 다양성을 고려치 않았으며 단지 관의 거칠기 또는 관종에 대하여 고려하는 제한성을 보여주고 있다. 그러나 본 연구에서 사용되어지는 지수형 산정식의 매개 변수들은 폭 넓은 범위의 정밀한 해를 구하기 위하여 관의 크기, 레이놀즈수, 관의 종류를 포함한 다양성을 가질 수 있도록 허용하였다. 또한 상용관 설계를 위한 양해법 산정식을 개발하는데 있어 부차손실을 고려하였다.

  • PDF

제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용 (Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem)

  • 유도근;이호민;이의훈;김중훈
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4999-5008
    • /
    • 2015
  • 제약조건이 있는 공학 최적화 문제에서 보다 좋은 결과를 얻기 위해서는 효율적인 제약조건 처리기법의 적용은 필수적이다. 본 연구에서는 네 가지의 제약조건 처리기법을 적용하여 메타휴리스틱 최적화 기법으로 널리 사용되고 있는 Harmony Search 알고리즘의 최적화 효율성을 평가하였다. 평가를 위해 대표적인 이산형 최적화 문제 중 하나인 상수관로 최소비용설계 문제를 적용하였다. 적용결과 전통적인 제약조건 처리방법으로 사용되던 벌칙함수에 비해 제안된 제약조건 처리기법의 결과가 효율적임을 확인하였다. 특히, ${\varepsilon}$-Constrained Method의 경우 기존방법에 비하여 효율적이고 안정적인 결과를 도출하였다. 제안된 방법은 새로운 최적화 알고리즘의 개발 필요 없이 HS의 성능을 증가시킬 수 있다는 점에서 의의가 있다고 판단된다. 또한 400개 이상의 결정변수를 가지는 대규모 문제의 적용을 통하여, 제안된 방법이 대규모 공학 최적화 문제에서도 활용이 가능함을 확인하였다.

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • 최지훈;성병호;유정현;서민환;김철주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • 제10권1호
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

열전소자와 PF Type 진동형 히트파이프를 이용한 냉.난방기에 관한 연구 (The Experimental Study on Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Oscillating Heat Pipe)

  • 김종수;임용빈;조원호
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.741-747
    • /
    • 2004
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type oscillating heat pipe with R-142b as a work ing fluid. The experiment was performed for 16 thermoelectric modules (6 A/15 V, size: 40${\times}$40${\times}$4 mm), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc) . Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type oscillating heat pipe were 30% by volume and 30%, respectively. The maximum cooler/heater capacity were 479W (COP : 0.47) and 630W (COP : 0.9), respectively.

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

배관 침부식 손상 연속모사 장비 개발 및 실증 (Development and demonstration of an erosion-corrosion damage simulation apparatus)

  • 남원창;류경하;김재형
    • Corrosion Science and Technology
    • /
    • 제12권4호
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.