• 제목/요약/키워드: Pipe Size Design

Search Result 126, Processing Time 0.847 seconds

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

The Characteristics in the Planning Process of Co-housing: Modification of Plans by Residents' Participation - Case of Co-housing Built by a Coordination Company in Seongmisan Village - (거주자참여 코하우징의 평면조정에서 나타난 계획과정의 특성 - 코디네이터회사에 의한 성미산마을 코하우징 사례연구 -)

  • Park, Kyoung-Ok;Lee, Sang-Un;Ryu, Hyun-Soo
    • Journal of the Korean housing association
    • /
    • v.24 no.4
    • /
    • pp.61-73
    • /
    • 2013
  • The purpose of this study is to provide information needed to the construction of the co-housing in the urban area. This study focused on the characteristics of co-housing in its planning process of private house & common space; 'economy', 'creativity' & 'sociality'. The object of this study is co-housing in 'Seongmi-san Village' in Seoul, which was built by a coordination company with residents' participation. The methods are investigating interview materials, floor plans of 9 households, & common space plans produced in the coordination process from the basic plan of private house & common space to the final plan. The results are as follows. 1) The size and plan of private house differed from each other. The water pipe location differed from each floor, so that there were difficulties in construction. In conclusion, these made no 'economy', but brought high 'creativity'. 2) The 'sociality' would be estimated as high because there were various types of resident participation; resident interviews on the planning, workshops for private housing plan, and workshops for common space.

Fatigue Life Evaluation and Optimization for District Heating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 최적화)

  • Ahn M.Y.;Jung S.W.;Lee S.M.;Chang Y.S.;Choi J.B.;Kim Y.J.;Kim S.H.;Kim Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.581-584
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The objectives of this paper are to systematize data processing of transition temperature, investigate its effects on fatigue life of DH pipes and optimization for size of DH pipes. A relational database management system as well as reliable fatigue life evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria. Through the optimum design process, the cross section diminished 18.64% and the CUF diminished 23.35%. So, it can be used as useful information in the future for optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

  • PDF

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

Effect of Soil Thermal Conductivity and Moisture Content on Design Length of Horizontal Ground Heat Exchanger (토양 열전도도와 수분함량이 수평형 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2012
  • This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state soils. It came out that the model developed by Cote and Konrad gave the best overall prediction results for unsaturated soils available in the literature. However, it still needs to be improved to cover a wider range of soil types and degrees of saturation. In the present study, parametric analysis is also conducted to investigate the effect of soil type and moisture content on the horizontal ground heat exchanger design. The analysis shows that horizontal ground heat exchanger pipe length is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that horizontal ground heat exchanger size can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

A Numerical Analysis on Flow Uniformity of SCR Reactor for 5,000PS Grade Marine Engine (5,000마력급 선박엔진용 SCR 반응기 유동 균일도에 관한 수치해석)

  • Yi, Chung-Seob;Jeong, In-Guk;Suh, Jeong-Se;Park, Chang-Dae;Jeong, Kyoung-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.28-35
    • /
    • 2012
  • This study is on SCR reactor, NOx reduction system in Marine that has been an issue nowadays. Especially design data was obtained by numerical on flow uniformity that is one of the design factor in SCR reactor. Also pressure drop on catalyst size inserted into SCR reactor was compared by experiment and numerical analysis. S/W, numerical analysis used for this study was confirmed that the result of numerical analysis used STAR-CCM+, common use CFD code, pressure drop on catalyst is not big different from the result of numerical analysis. In addition, degree of uniformity of liquid on SCR reactor was over 0.9. Whereas it was assured that degree of uniformity of liquid was changed depends on the shape of pipe at the entrance of SCR.

Design and manufacturing of the MRI Cryostat (MRI용 CRYOSTAT의 설계 제작)

  • Cho, Jeon-Wook;Lee, Eon-Yong;Kwon, Young-Kil;Ryu, Kang-Sik;Ryu, Choong-Sik;Kwon, Oh-Bum;Lee, Hong-Ju;Lee, Hai-Sung;Fukui, T.;Komoshita, T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.144-146
    • /
    • 1995
  • A superconducting 2 tesla MRI magnet for the animal magnetic resonance imaging has been developed as a basic model for the application of the precise supercoducting magnet technology. MRI cryostat with 210mm room temperature bore was designed and manufactured for this magnet. The cryostat was designed basically not only to extract the principal design parameters at the performance test but also for the convenience of the manufacturing. The most extinct feacture of the cryostat is that it does not have $LN_{2}$ tank and the 77K thermal shield is cooled by circuling $LN_{2}$ through copper pipe which is welded around the shield plate. It results in reduction of the total cryostat size(about 30%).

  • PDF

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.