• Title/Summary/Keyword: Pipe Robot

Search Result 109, Processing Time 0.02 seconds

Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe (스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘)

  • Kim, Dongseon;Kim, Hojoong;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Performance Evaluation on the Pipelines for an Automated Vacuum Waste Collection System (생활폐기물 자동집하시설 이송관망 성능평가)

  • Jang, Choon-Man;Lee, Sang-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.26-32
    • /
    • 2015
  • This paper describes performance evaluation of design parameters, air velocity inside a pipeline and pressure along a pipeline, using experimental measurements in an automated vacuum waste collection system. Automatic robot having six cameras is introduced to analyze the internal pipeline conditions whether waste accumulates at the bottom of the pipeline or not. Throughout the experimental measurements of the pipeline having the various shapes, it is found that pressure and internal air velocity linearly increase along the pipeline from a waste inlet to a waste collection station while air density decreases due to the air compression effect with high pressure. Although air velocity inside the pipeline at a waste inlet keeps design velocity range between 20 m/s and 30 m/s, it is noted that air velocity near the waste collection station exceeds maximum design velocity of 30 m/s. Pressure increase per unit length is changed from 17.6 Pa/m to 18.9 Pa/m, which depends on the air velocity inside the pipeline. From the investigation inside the pipeline with CCTV loaded on an automated robot, waste accumulated at the bottom of the pipeline is mainly found at the downstream of a circular curved pipe, an inclined pipe and a bended pipe.

Intelligent interface using hand gestures recognition based on artificial intelligence (인공지능 기반 손 체스처 인식 정보를 활용한 지능형 인터페이스)

  • Hangjun Cho;Junwoo Yoo;Eun Soo Kim;Young Jae Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.38-51
    • /
    • 2023
  • We propose an intelligent interface algorithm using hand gesture recognition information based on artificial intelligence. This method is functionally an interface that recognizes various motions quickly and intelligently by using MediaPipe and artificial intelligence techniques such as KNN, LSTM, and CNN to track and recognize user hand gestures. To evaluate the performance of the proposed algorithm, it is applied to a self-made 2D top-view racing game and robot control. As a result of applying the algorithm, it was possible to control various movements of the virtual object in the game in detail and robustly. And the result of applying the algorithm to the robot control in the real world, it was possible to control movement, stop, left turn, and right turn. In addition, by controlling the main character of the game and the robot in the real world at the same time, the optimized motion was implemented as an intelligent interface for controlling the coexistence space of virtual and real world. The proposed algorithm enables sophisticated control according to natural and intuitive characteristics using the body and fine movement recognition of fingers, and has the advantage of being skilled in a short period of time, so it can be used as basic data for developing intelligent user interfaces.

  • PDF

Flexible Loop Wheel Mechanism for Intestine Movement (탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘)

  • Im, Hyeong-Jun;Min, Hyeon-Jin;Kim, Byeong-Gyu;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine (자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험)

  • Son, In-Soo;Hur, Sang-Bum;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

Accuracy Analysis of 3D Posture Estimation Algorithm Using Humanoid Robot (휴머노이드 로봇을 이용한 3차원 자세 추정 알고리즘 정확도 분석)

  • Baek, Su-Jin;Kim, A-Hyeon;Jeong, Sang-Hyeon;Choi, Young-Lim;Kim, Jong-Wook
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.71-74
    • /
    • 2022
  • 본 논문은 최적화알고리즘을 이용한 관절각 기반 3차원 자세 추정 기법의 정확도를 휴머노이드 로봇을 이용하여 검증하는 방법을 제안한다. 구글의 자세 추정 오픈소스 패키지인 MPP(MediaPipe Pose)로 특정자세를 취한 휴머노이드 로봇의 관절 좌표를 카메라의 픽셀 좌표로 추출한다. 추출한 픽셀 좌표를 전역최적화 방법인 uDEAS(univariate Dynamic Encoding Algorithm for Searches)를 통해 시상면과 관상면에서의 각도를 추정하고 휴머노이드 로봇의 실제 관절 각도와 비교하여 알고리즘의 정확도를 검증하는 방법을 제시한다.

  • PDF

A Study on the Performance Evaluation of a Tele-operated Hume Concrete Pipe Laying Machine (흄관매설 자동화 장비의 성능평가에 관한 연구)

  • Ryu Yeon-Taek;Park Sang-Jun;Byun Woong-Ho;Kim Young-Suk;Lee Jun-Bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.634-637
    • /
    • 2003
  • A tele-operated hume concrete pipe laying machine has been developed to solve several problems on safety, quality, productivity, etc. It is required to propose a performance evaluation model and methodology in order to measure productivity, economic feasibility, quality and safety. The primary objective of this study is to propose a model and methodology for the performance evaluation of the developed tele-operated hume concrete pipe laying machine. Furthermore, this study evaluates its performance compared with the existing hume pipe laying work by using data which obtained in field trials. It is anticipated that the proposed model and methodology might be effectively used in analyzing the performance of other automation robots.

  • PDF

Development of the Evaluation Model for Performance Analysis of a Tele-operated Hume Concrete Pipe Laying Machine (흄관매설 자동화 장비의 성능분석을 위한 평가모델의 개발)

  • Ryu Yeon-Taek;Park Sang-Jun;Lee Jeong-Ho;Jeong Myung-Hoon;Kim Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.1 s.17
    • /
    • pp.157-167
    • /
    • 2004
  • In developing an automated construction system, it is essential to propose a performance evaluation model and methodology, which can measure productivity, quality, safety and economic feasibility in order to verify its superiority. Recently, a tele-operated hume concrete pipe laying machine has been developed to solve several problems related to safety, quality, productivity in conventional method. The primary objective of this study is to propose a model and methodology for the performance evaluation of the developed tele-operated hume concrete pipe laying machine. Furthermore, this study evaluates the automation machine's performance compared with the existing hume pipe laying work by using data which obtained in many field trials. It is anticipated that the proposed model and methodology might be effectively used in analyzing the performance of other automation robots.

An Efficient Water Pressure Measurement System of the Water Pipes using IoT (IoT를 이용한 상수도관의 효율적인 수압 측정 시스템)

  • Lee, Jae-soo;Choi, In-ho;Hong, Kwon-eui;Choi, Hak-yun;Roh, Hee-jung;Ahn, Jeong-keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.114-122
    • /
    • 2018
  • In this paper, we propose new water pressure measurement system to measure the water pressure of water pipe laid underground beneath the manhole efficiently. For this purpose, we installed water pressure sensor(IoT) which has built-in bluetooth module at valve of water pipe. The proposed system can be managed through collected data which measured at sensor and then transmitted to smart phone through bluetooth connectivity and re-transmitted to server on this system. By checking out water pressure data stored in server from remote location, the persons in charge can confirm the leakage of water pipe or propriety of water pressure in management area. By this procedure, they can detect the existence of condition of water pipe and manage water pressure of water pipe efficiently.