• Title/Summary/Keyword: Pipe Processing

Search Result 208, Processing Time 0.023 seconds

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

FPGA Implementation for Real Time Sobel Edge Detector Block Using 3-Line Buffers (3-Line 버퍼를 사용한 실시간 Sobel 윤곽선 추출 블록 FPGA 구현)

  • Park, Chan-Su;Kim, Hi-Seok
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • In this Paper, an efficient method of FPGA based design and implementation of Sobel Edge detector block using 3-Line buffers is presented. The FPGA provides the proper and sufficient hardware for image processing algorithms with flexibility to support Sobel edge detection algorithm. A pipe-lined method is used to implement the edge detector. The proposed Sobel edge detection operator is an model using of Finite State Machine(FSM) which executes a matrix mask operation to determine the level of edge intensity through different of pixels on an image. This approach is useful to improve the system performance by taking advantage of efficient look up tables, flip-flop resources on target device. The proposed Sobel detector using 3-line buffers is synthesized with Xilinx ISE 14.2 and implemented on Virtex II xc2vp-30-7-FF896 FPGA device. Using matlab, we show better PSNR performance of proposed design in terms of 3-Line buffers utilization.

Development of Plasma Reactor of Dielectric Barrier Discharge for Water Treatment (수처리용 유전체 장벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.597-603
    • /
    • 2012
  • Non-thermal plasma processing using a dielectric barrier discharge (DBD) has been investigated as an alternative method for the degradation of non-biodegradable organic compounds in wastewater. The active species such as OH radical, produced by the electrical discharge may play an important role in degrading organic compound in water. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO) was investigated as an indicator of the generation of OH radical. The DBD plasma reactor of this study consisted of a plasma reactor, recycling pump, power supply and reservoir. The effect of diameter of external reactor (15 ~ 40 mm), width of ground electrode (2.5 ~ 30 cm), shape (pipe, spring) and material (copper, stainless steel and titanium) of ground electrode, water circulation rate (3.1 ~ 54.8 cm/s), air flow rate (0.5 ~ 3.0 L/min) and ratio of packing material (0 ~ 100 %) were evaluated. The experimental results showed that shape and materials of ground were not influenced the RNO degradation. Optimum diameter of external reactor, water circulation rate and air flow rate for RNO degradation were 30 mm, 25.4 cm/s and 4 L/min, respectively. Ground electrode length to get the maximum RNO degradation was 30 cm, which was same as reactor length. Filling up of glass beads decreased the RNO degradation. Among the experimented parameters, air flow rate was most important parameters which are influenced the decomposition of RNO.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A.;Onaji, Mary E.;Lawal, Abubakar A.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.212-223
    • /
    • 2015
  • Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.

Sterilization of Gochujang Sauce with Continuous Ohmic Hea (연속 옴가열 장치를 이용한 고추장 소스의 살균)

  • Choi, Jun-Bong;Cho, Won-Il;Jung, Jung-Yoon;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.474-479
    • /
    • 2015
  • In this study, five different Gochujang (a traditional Korean sauce prepared using fermented red pepper paste) sauces were heated at $100^{\circ}C$ for 5 min using a continuous ohmic heating system. Ohmic heating yielded greater reduction in microbial counts (90-95% reduction) than did conventional heating (65-75% reduction). The sterilization effect of the continuous ohmic heater increased with increasing sample flow rate and decreasing Reynolds number inside the pipe. Low-viscosity samples had higher electrical conductivity and were better suited for ohmic heating than were high-viscosity samples. The color and texture were also satisfactorily maintained after ohmic heating. Compared with conventional heating, ohmic heating provided rapid and uniform heating, which is more suitable for aseptic thermal processing of viscous foods.

Mining Search Keywords for Improving the Accuracy of Entity Search (엔터티 검색의 정확성을 높이기 위한 검색 키워드 마이닝)

  • Lee, Sun Ku;On, Byung-Won;Jung, Soo-Mok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.451-464
    • /
    • 2016
  • Nowadays, entity search such as Google Product Search and Yahoo Pipes has been in the spotlight. The entity search engines have been used to retrieve web pages relevant with a particular entity. However, if an entity (e.g., Chinatown movie) has various meanings (e.g., Chinatown movies, Chinatown restaurants, and Incheon Chinatown), then the accuracy of the search result will be decreased significantly. To address this problem, in this article, we propose a novel method that quantifies the importance of search queries and then offers the best query for the entity search, based on Frequent Pattern (FP)-Tree, considering the correlation between the entity relevance and the frequency of web pages. According to the experimental results presented in this paper, the proposed method (59% in the average precision) improved the accuracy five times, compared to the traditional query terms (less than 10% in the average precision).

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

A Study on the high-speed Display of Radar System Positive Afterimage using FPGA and Dual port SRAM (FPGA와 Dual Port SRAM 적용한 Radar System Positive Afterimage 고속 정보 표출에 관한 연구)

  • Shin, Hyun Jong;Yu, Hyeung Keun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • This paper was studied in two ways with respect to the information received from the video signal separation technique of PPI Scop radar device. The proposed technique consists in generating an image signal through the video signal separation and synthesis, symbol generation, the residual image signal generation process. This technology can greatly improve the operating convenience with improved ease of discrimination, screen readability for the operator in analyzing radar information. The first proposed method was constructed for high-speed FPGA-based information processing systems for high speed operation stability of the system. The second proposed method was implemented intelligent algorithms and a software algorithm function curve associated resources.This was required to meet the constraints on the radar information, analysis system. Existing radar systems have not the frame data analysis unit image. However, this study was designed to image data stored in the frame-by-frame analysis of radar images with express information MPEG4 video. Key research content is to highlight the key observations expresses the target, the object-specific monitoring information to the positive image processing algorithm and the function curve delays. For high-definition video, high-speed to implement data analysis and expressing a variety of information was applied to the ARM Processor Support in Pro ASIC3.