• Title/Summary/Keyword: Pipe Material

Search Result 711, Processing Time 0.025 seconds

A Study on the Absorptive Silencer for Reducing Noise Propagate in Seawater Pipes on Ship (함정의 해수 배관소음 저감을 위한 흡음형 소음기 연구)

  • Seo, Youngsoo;Park, Kyenghoon;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.770-776
    • /
    • 2013
  • Fluid-borne noise produced by seawater circulating pumps propagates through the seawater connected pipes and radiates from the hull opening of a ship. This noise causes the increases of underwater radiated noise and self noise of ship. To reduce the noise propagation through the seawater connected pipes, absorptive silencer must be needed. In this paper, theoretical model to analyze the transmission loss of absorptive silencer was presented and the design parameters of absorptive silencer were verified. Theoretical calculations were performed according to a thickness, a length, an internal pressure and mechanical properties of its absorptive material in order to analyze the characteristics of absorptive silencer. From the theoretical calculation results, the absorptive silencer was manufactured and transmission loss was measured in the test facilities. The results of theory and measurement are compared and discussed.

Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming (열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구)

  • Lee, G.M.;Go, G.Y.;Lee, H.C.;Kim, D.O.;Lee, Y.K.;Kim, J.S.;Song, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation (슬러리 이송을 위한 관내 유속 추정 방법 연구)

  • Kwon, Seunghee;Jeong, Soonyong;Kim, Yuseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.21-32
    • /
    • 2014
  • This Research have suggested the new estimation method using parameter estimation algorithm to substitute established velocity and friction factor calculation equation. Established calculation equation has some difficulties for estimation and reflecting exactly flow specification cause parameter uncertainty and material uncertainty governed real phenomenon, so this research has used system modeling method for flow specification estimation and suggested estimation method.

Effect of Soil Thermal Conductivity and Moisture Content on Design Length of Horizontal Ground Heat Exchanger (토양 열전도도와 수분함량이 수평형 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2012
  • This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state soils. It came out that the model developed by Cote and Konrad gave the best overall prediction results for unsaturated soils available in the literature. However, it still needs to be improved to cover a wider range of soil types and degrees of saturation. In the present study, parametric analysis is also conducted to investigate the effect of soil type and moisture content on the horizontal ground heat exchanger design. The analysis shows that horizontal ground heat exchanger pipe length is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that horizontal ground heat exchanger size can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Yoo Seong-Yeon;Chung Min-Ho;Lee Yong-Moon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.839-848
    • /
    • 2005
  • Plastic plate heat exchangers have many advantages over the conventional heat exchangers such as aluminum plate heat exchangers, rotary wheel heat exchangers and heat pipe heat exchangers which have been used for ventilation heat recovery in the air-conditioning systems. In the present study, pressure drop and heat transfer characteristics of plastic plate heat exchangers are investigated for various design parameters and operating conditions which affect the performance of the plastic plate heat exchangers. In flat plate type heat exchanger, material thickness and channel height of heat exchanger are considered, and corrugate size and heat transfer area are considered in case of corrugate type heat exchanger. Pressure drop and effectiveness of the corrugate type heat exchanger increase as the corrugate size decreases.

Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes (히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상)

  • Park, Gyu Jin;Yang, Jin Oh;Lee, Jae Joong;Kwak, Ho Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

The Integrity Assessment Method of Initailly Cracked Structural Components by Reliability Analysis (신뢰성해석에 의한 초기균열을 갖는 구조부재의 건전성 평가방법)

  • S.J. Yim;T.U. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.161-176
    • /
    • 1993
  • For the purpose of assessing structural integrity at a level of complexity and accuracy appropriate for the situation, integrity assessment methods are formulated with the following methods. One is three-tier assessment method of the revised BSI PD 6493 which considers stable crack growth effect, the others are limit load analysis which estimates the plastic collapse load and stability assessment method which considers stable crack growth of ductile material exactly using J-integral and tearing modulus. Besides, integrity assessments for center cracked panel(CCP) specimen and the circumferential through-cracked pipe are carried out and reliability analysis is accomplished by the first order reliability method which is one of the conventional reliability methods. Also the accuracy of the present method is verified by Monte Carlo method.

  • PDF

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

Hydrox Generator for Steel Manufacturing (철강재료 가공용 수산소 혼합가스 발생기)

  • Kim, Hong-Gun;Kwac, Lee-Ku;Lee, Woo-Gum;Cha, Hwa-Dong;Shin, Jooung-Dal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2011
  • A low capacity generator converted to high capacity of 40m3 is designed and developed in order to use the hydroxy gas in the steel manufacturing process. For efficient design, it is increased from 8 electrode tubes to 10 electrode tubes as well as expanding the diameter of cell integument up to two times bigger, which can increase the amount of hydrogen occurrence per a cell significantly. In addition, circulating pump and pipe, heat exchanger of affiliated SUS material have been used in the circulation of electrolysis catalyst, and circulating cooling section and piping design are also developed. The flame trap is designed into all-in-one suitable check valve in the flow rate of 28-35m3/h and its application is possibly applied in work operation. It is found that the efficiency of generator developed is enhanced substantially up to 84%. It is expected that the application in this field can be expanded significantly by this study.