• Title/Summary/Keyword: Pipe Leakage Detection

Search Result 41, Processing Time 0.02 seconds

Estimation method of natural rate of rise of leakage in water distribution system (배급수관망에서의 누수복원량 산정방법)

  • Jin, Saemmul;Kim, Kyoungpil;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.299-309
    • /
    • 2019
  • Waterworks facilities inevitably experience some amount of leakage even if there is a lot of investment or state-of-the-art technology that is applied such as DMA(District Metered Area) system construction, leakage detection, repair, pipe rehabilitation, etc. The primary reason is the leakage is naturally restored over time. In the UK, this restoration characteristic is defined as NRR(Natural rate of rise of leakage) and used to decision making for prioritizing active leakage control of DMAs. However, this restoration characteristic is well recognized, but researches on NRR in the water distribution system are insufficient in Korea. In this study, the estimation method of NRR was developed suitable for applicating in Korea considering of SCADA data, water infrastructure, and water usage patterns by modification of the UK's NRR method. The proposed method was applied to 9 DMAs and verified it's applicability by comparing with the other water loss performance indicators. It is expected that the proposed method can be used to support decision making for sustainable NRW(Nor-revenue water) management in the water distribution system.

A Study on a Remote Leakage Sensing System in Waterworks Network (원격 상수도관망 누수감지 시스템에 관한 연구)

  • Kang, Byung-Mo;Hong, In-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1311-1318
    • /
    • 2004
  • Demand of water is increased according to city centralism phenomenon in population and development. In this progress, guarantee of enough water is important factor for water supply policy. For the detection of exact water leakage point, an epochal sensing technique using computer and internet is required, so, the water pipe having sensing wire and sensing technology using TDR(Time Domain Reflectometer), is proposed in this paper. For the prove of effectiveness of this system, pilot system using 300mm 3-layer coated steel pipe is made and tested.

Analysis of Elastic Wave Based Leakage Detection Technology Using Accelerometers (가속도계를 이용한 탄성파 기반 누수탐지 기술 분석)

  • Choi, Kwangmook;Lee, Hohyun;Shin, Gangwook;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1231-1240
    • /
    • 2020
  • Water pipes are laid on the ground, making it impossible to visually detect leaks due to aging of pipes, and technology to detect leaks in pipes is mainly used to detect leaks in pipes by detecting leaks. In this paper, two accelerometers were attached to both ends of the constant water piping to calculate the time difference between the acquired data to detect leakage points. The leak test of piping was performed by installing valves at 4.3m, 8.6m, and 12.9m points on piping 17.2m, and changing the development rate of valves to 30% and 70%. Leakage can be detected for pressure drop in piping, which is 30% and 70% open valve. It is very important to detect leakage in the early stage, and it is judged that detection of the initial leak point from the algorithm applied in this paper will be possible.

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

Efficiency evaluation of water leakage management methods in local small and medium cities (지방중소도시의 누수관리방법에 대한 효율성 평가)

  • Hwang, Jinsoo;Choi, Taeho;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • This study set up the estimates of leakage management efficiency evaluation and leakage management goal that could be used in local water distribution networks efficiency business and modernization business. The data were analyzed using data envelopment analysis and multiple regression analysis. To this end, with leakage management input indices concerning leakage reduction activities (e.g., aged pipe replacement, water meter replacement, leakage restoration, and leakage detection) and leakage management calculation indices (e.g., the increase of revenue water ratio and the reduction of leakage ratio), the data on 22 K-water consignment local water supply systems were analyzed for the years from 2004 through 2018. Using the results of efficiency analysis by data envelopment analysis, the other DMUs (Decision Making Unit) benchmarked the DMU with the highest efficiency to maximize the leakage management efficiency for all DMUs. Through this, leakage management goal estimates were drawn with the input indices of four leakage reduction activities and calculation indices of the increase of revenue water ratio and the reduction of leakage ratio by multiple regression analysis for each group based on the revenue water ratio and leakage ratio. The correlation coefficients of the leakage management goal estimate for the criteria for the revenue water ratio amounted to 0.553 and 0.771. The correlation coefficients of the leakage management goal estimate for the criteria for leakage ratio were 0.397 and 0.865. Accordingly, we estimated the quantity and priority of four leakage reduction activities for the target leakage ratio and revenue water ratio.

Pinpointing of Leakage Location Using Pipe-fluid Coupled Vibration (파이프-유체의 연성진동을 이용한 누수위치 식별연구)

  • 이영섭;윤동진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of relevant countermeasures against leaks is to find and repair of leak points of the pipes. Leak noise is a good source to identify the location of leak points of the pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they have not been so efficient tools. In this paper, accelermeters aroused to detect leak locations which could provide an easier and more efficient method. Filtering, signal processing and algorithm of raw input data from sensors for the detection of leak location are described. A 120m-long and a 70m-long experimental pipeline systems are installed and the results with the systems show that the algorithm with the accelerometers offers accurate pinpointing for leaks location detection. Theoretical analysis of sound wave propagation speed of water in underground pipes, which is critically important in leak locating, is also described.

Attenuation Characteristics of the Buried Steel Water Pipes (지하매설 유체함입 강파이프의 감쇠특성 규명)

  • Park, K.J.;Kang, W.S.;Kim, Y.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The attenuation of the fundamental non-torsional modes that propagate down buried steel water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within pipe. The established acoustic technique used to locate leaks in buried steel water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode.

  • PDF

Fluid Sensor and Algorithm for Trouble Detection of Solar Thermal System (태양열 시스템 고장진단을 위한 유체센서와 알고리즘)

  • Lee, Won-Chul;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.351-356
    • /
    • 2014
  • Typical trouble patterns in solar thermal systems include working fluid leakage and freezing other than breakdown of pump. A fluid sensor for measuring electric resistance of fluid was developed and installed at the top of the collector piping in order to check the fault of solar system. Working fluid level in the pipe was determined by measuring electric resistance from a fluid sensor. On the base of this, it was confirmed that the fluid sensor diagnoses leakage of fluid. Electric resistance of propylene glycol aqueous solution was measured in the range of $0{\sim}70^{\circ}C$ and 0~40% of concentration. The response surface analysis was performed by using a central composite design, and the regression equation was derived from the relationship between electric resistance, temperature, and concentration. Through the experiment in a real solar system, we can estimate a concentration of working fluid when a pump is not operating and predict a possibility of freezing. Finally, an effective algorithm for trouble shooting was proposed to operate and maintain the solar system.

A Study on the Design of RFECT System for Ferromagnetic Pipelines (강자성체 배관 탐상용 RFECT System의 설계에 관한 연구)

  • Lee, Yu Ki;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.171-178
    • /
    • 2014
  • Remote Field Eddy Current Testing (RFECT), one of the ways which is a nondestructive testing using electromagnetic fields, can make up for Magnetic Flux Leakage (MFL) weaknesses and general Eddy Current Testing (ECT) weaknesses which is an occurrence of a huge friction force or disadvantage of detecting defects on the outer wall. So many of institutes and laboratories have studied on RFECT for the past 50 years. But There is a lack of discussion about a study on eddy current and magnetic field distributions in a pipe wall and designing of RFECT exciter coil. In this paper, eddy current and magnetic field distributions in a pipe wall and influence of altering variables are analyzed. Also, the optimal design algorithm about the RFECT Exciter coil are proposed, and influence on defect signals caused by alteration of its shape is analyzed.