• 제목/요약/키워드: Pintle Type Nozzle

검색결과 20건 처리시간 0.022초

수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교 (Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector)

  • 배규한;임주완;이재현;문석수
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.

핀틀-노즐이 적용된 고체추진기관의 연소 시험 성능 분석 (Experimental Study and Performance Analysis of the Solid Rocket Motor with Pintle Nozzle)

  • 진정근;하동성;오석진
    • 한국추진공학회지
    • /
    • 제18권5호
    • /
    • pp.19-28
    • /
    • 2014
  • 핀틀 노즐 기술을 적용한 고체 추진기관의 지상 연소시험을 수행하여 내탄도 성능 해석과 비교하였다. Baffle이 없는 핀틀-노즐 추진기관 시험 결과 초기 압력은 내탄도 성능 해석 결과와 유사하였으나 점진적으로 압력이 증가하는 현상이 나타났다. 또한, 핀틀 주변으로 공급되는 유동을 균일하게 형성하기 위하여 baffle을 추가하여 시험을 수행하였다. 시험 결과 예측되는 압력보다 40% 높은 압력이 측정되었으며 CFD 유동해석을 통하여 baffle에 의한 전압력 손실이 발생하며 10%의 전압력 손실을 고려하여 예측된 연소실 압력이 측정 압력과 유사함을 확인하였다.

간헐적인 연료분무의 유동특성에 관한 연구 (A Study on the Flow Characteristics of an Intermittent Fuel Spray)

  • 김원태;강신재
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1198-1206
    • /
    • 1997
  • The flow characteristics of an intermittent fuel injection into a stationary ambient air were investigated using gasoline. The measurements were made by two-channel, air cooling type Phase Doppler Anemometer(PDA) system (DANTEC, 750 MW). And a pintle type injector of MPI (Multi-point Port Injection) system was utilized as a fuel injector. The PDA receiver optic was set up in a 60.deg. C forward scatter arrangement to obtain the optimum scattering signal of fuel droplets. The data were obtained by synchronizing PDA system with the fuel injection period, and the axial and radial velocity and turbulent components of fuel droplets were mainly measured for the analysis of temporal and spatial distribution depending upon the fuel injection pressures.

큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향 (Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow)

  • 허준영;정준영;성홍계;양준서;이지형
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2013
  • 핀틀 움직임에 의해 발생되는 큰 유동박리에 대해 적합한 2-방정식 난류모델의 압축성계수 보정모델을 판단하기 위하여 수치적 연구를 수행하였다. 난류모델은 저 레이놀즈수 k-${\varepsilon}$ 모델과 k-${\omega}$ SST 모델에 압축성 보정 모델(Wilcox와 Sarkar 모델)을 적용하여, 핀틀 노즐의 세부유동장을 관찰하고 노즐 벽면에서의 압력을 실험데이터와 비교 분석하였다. 마하디스크(Mach disk)의 위치와 박리영역에서의 압력 회복 형태는 난류모델에 따라 다르게 나타났으며, 각 난류모델에 압축성 보정을 적용하여 유동 박리 포획의 정확도를 개선하였다. 압축성이 보정된 k-${\varepsilon}$ 모델이 실험결과와 매우 잘 일치하였다.

고도 보정용 E-D 노즐의 추력 특성에 대한 수치해석 연구 (Numerical Study on Thrust Characteristics of an E-D Nozzle for Altitude Compensation)

  • 황희성;허환일
    • 한국추진공학회지
    • /
    • 제20권3호
    • /
    • pp.87-95
    • /
    • 2016
  • 본 논문에서는 E-D 노즐을 설계하여 고도 보정에 대한 효과와 Throttling에 대한 가능성 연구를 수행하였다. 고도 보정에 대한 효과를 확인하기 위하여 연소실 압력을 일정하게 유지하며, 총 3가지(해수면, 고도 10 km, 고도 16 km)의 외부 대기환경 조건을 이용하여 해석적 연구를 수행하였다. 그 결과 고도가 상승할수록 유효 노즐 출구 면적 역시 점점 증가하였으며 이로 인하여 추력도 증가하였다. 또한 Throttling에 대한 가능성을 파악하기 위하여 핀틀의 위치를 연소실 쪽으로 후진시켜 노즐 목 면적을 작게 모델링하여 해석적 연구를 수행하였다. 일반적인 핀틀 추력기와 동일하게 노즐 목 면적이 줄어들수록 연소실 압력이 상승하며 추력 역시 증가하였다.

고점성 바이오 디젤유의 분무미립화에 관한 연구 (A Study on the Atomization of a Highly Viscous Biodiesel Oil)

  • 주은선;정석용;강대운;김종천
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.146-153
    • /
    • 1997
  • An experiment was conducted to figure out the atomization characteristics of a highly viscous biodiesel fuel with rice-barn oil applying and ultrasonic energy into it. A spray simulator for the droplet atomization, an ultrasonic system, and six different nozzles(3 pintle-type nozzles and 3 single hole-type nozzles) were made. To investigate effects of ultrasonic energy in a highly viscous liquid fuel, an immersion liquid method was used as a measurement method on droplet size distributions. It was found that the ultrasonic energy was effective for the atomization improvement of the rice-bran oil as a highly viscous biodiesel fuel and the factor나 such as the nozzle opening pressure, pin-edge angles, hole diameters, and collection distances affected the atomization of spray droplets.

  • PDF

연료분사노즐의 니들밸브 형상변화에 따른 분무특성에 관한 연구 (A study on Spray Characteristic of Fuel Injection Nozzle with Geometrical Shape Changes of Needle Valve)

  • 채재우
    • 오토저널
    • /
    • 제9권4호
    • /
    • pp.35-40
    • /
    • 1987
  • The experimental study, using constant pressure injection system, is carried out to investigate the effect of the geometrical shape changes of the needle valve of the effective flow area, the spray angle and the Sauter's Mean Diameter according to needle valve lift for a pintle-type injection nozzle. The results are as follows: 1) With the increase of the needle valve lift, the effective flow area is increased, the spray angle is at first increased and later decreased, and the Sauter's Mean Diameter is decreased. 2) It is also shown that the spray angle is maximum at the rapidly increased region of the effective flow area.

  • PDF

디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing)

  • 이창식;이기형;전문수;김영호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

고온.고압용기에서의 핀틀노즐의 분무특성에 관한 실험적 연구 (An Experimental studies Spray characteristic of Pintle type Nozzle on High Pressure Chamber)

  • 송규근;정재연;오은탁;류호성;안병규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.67-73
    • /
    • 2002
  • The characteristics of fuel spray influence on the engine performances such as power, fuel economy and emissions. therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factor which controls the fuel spray is injection pressure, ambient pressure, engine speed et al.. In :his study, We measured spray angle, spray penetration and spray tip velocity considering injection pressure(10,14㎫), ambient pressure(3,4,5㎫), fuel pump speed(500,700,900rpm) in the high temperature and pressure chamber. Experimental results are summarized as follows: 1) Injection pressure influence on the characteristics of spray namely As Injection pressure Is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle, spray penetration is increased by increasing the fuel pump speed. 3) Ambient pressure plays an important role in spray characteristics.

  • PDF

고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구 (An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.