• Title/Summary/Keyword: Pinhole detection

Search Result 22, Processing Time 0.018 seconds

A Computer Simulation for Small Animal Iodine-125 SPECT Development (소동물 Iodine-125 SPECT 개발을 위한 컴퓨터 시뮬레이션)

  • Jung, Jin-Ho;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jeong, Myung-Hwan;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.74-84
    • /
    • 2004
  • Purpose: Since I-125 emits low energy (27-35 keV) radiation, thinner crystal and collimator could be employed and, hence, it is favorable to obtain high quality images. The purpose of this study was to derive the optimized parameters of I-125 SPECT using a new simulation tool, GATE (Geant4 Application for Tomographic Emission). Materials and Methods: To validate the simulation method, gamma camera developed by Weisenberger et al. was modeled. Nal(T1) plate crystal was used and its thickness was determined by calculating detection efficiency. Spatial resolution and sensitivity curves were estimated by changing variable parameters for parallel-hole and pinhole collimator. Peformances of I-125 SPECT equipped with the optimal collimator were also estimated. Results: in the validation study, simulations were found to agree well with experimental measurements in spatial resolution (4%) and sensitivity (3%). In order to acquire 98% gamma ray detection efficiency, Nal(T1) thickness was determined to be 1 mm. Hole diameter (mm), length (mm) and shape were chosen to be 0.2:5:square and 0.5:10:hexagonal for high resolution (HR) and general purpose (GP) parallel-hole collimator, respectively. Hole diameter, channel height and acceptance angle of pinhole (PH) collimator were determined to be 0.25 mm, 0.1 mm and 90 degree. The spatial resolutions of reconstructed image of the I-125 SPECT employing HR:GP:PH were 1.2:1.7:0.8 mm. The sensitivities of HR:GP:PH were 39.7:71.9:5.5 cps/MBq. Conclusion: The optimal crystal and collimator parameters for I-125 Imaging were derived by simulation using GATE. The results indicate that excellent resolution and sensitivity imaging is feasible using I-125 SPECT.

A Study on the Development and the Verification Experiment of ECDA Equipment (외면부식직접평가 장비 개발 및 실증 시험에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jung, Sung-Won;Park, Kyeong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.72-81
    • /
    • 2016
  • When the coatings of buried steel pipelines are damaged, corrosion could be occurred on the surface of the damaged areas. Moreover the pinhole occurred by corrosion of pipelines may cause accidents due to gas leakage. To prevent these accidents, foreign countries including UK and USA have carried out coating defect detection on the buried gas pipelines by using a DCVG or a ACVG and have conducted direct assessment of pipelines through digging the ground, and if necessary, have repaired the pipelines. That is called ECDA i.e External Corrosion Direct Assessment which is regulated by NACE standards(SP 0502) and etc. In Korea, the ECDA provisions were included in KGS FS551 in 2014 when the regulations of Safety Validation in Detail for the medium-pressure piping were introduced. We have developed the equipment which can be used to detect external corrosion of the buried gas pipelines. We have also constructed pipeline test bed for empirical test of the developed equipment. In addition, we have carried out the verification experiments of the developed equipment on the test bed to demonstrate the performance of the equipment. The experiments were conducted by comparison tests of the developed equipment and other equipments which have been introduced and used in Korea. As the result, we have found the developed equipment is easier to use and has far superior performance compared to other equipment being used in Korea.