• 제목/요약/키워드: Pin-fin heatsink

검색결과 2건 처리시간 0.016초

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

CPU 히트싱크에서 핀의 배열이 냉각성능에 미치는 영향에 대한 수치해석 (A Numerical Study on the Effect of Fin-array of Heat-sink on the Cooling Performance of CPU)

  • 김성찬;김건국;전병진;최형권
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.12-17
    • /
    • 2016
  • In this study, numerical simulations for the conjugate heat transfer of air with a heat-sink of CPU were conducted. The heat-sink consisted of many fins of cylinder shape and the effect of the number of fins on the cooling performance of the heat sink was investigated. Grid independent solutions were obtained to compare the maximum temperature of the heat-sink for various conditions. It was found that maximum temperature of the heat-sink asymptotically approached 310K as the number of fins went to infinity. The energy exchange of air with the heat-sink was found to be nearly independent on the number of fins.