• Title/Summary/Keyword: Pin-fin array

Search Result 16, Processing Time 0.021 seconds

Heat Transfer Characteristics depending on the Length of a Channel with Pin-Fin Array (핀-휜을 삽입한 채널의 길이에 따른 열전달 특성 변화)

  • Son, Young-Seok;Shin, Jee-Young;Lee, Sang-Rog
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.418-425
    • /
    • 2007
  • The power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Therefore, suitable heat dissipation has become one of the primary limiting factors to ensure the guaranteed performance and reliable operation of the electronic devices. A pin-fin array which may be considered as a porous medium could be used as an alterative cooling system of the electronic equipment. The aim of the present study is to investigate the forced-convective heat transfer characteristics of pin-fin heat exchangers. Convective heat transfer through the pin~fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristic is investigated and compared with the Previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

Enhancement of Heat Transfer in Internal Passage using Pin-Fin with Jet Hole and Complex Pin-Fin-Dimple Array (제트홀이 설치된 핀-휜 및 핀-휜/딤플 복합 배열을 사용한 내부유로에서의 열전달 향상)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • A Pin-fin array is widely used to enhance the heat transfer in the internal cooling passage. The heat transfer distribution around the pin-fin is varied by the horseshoe vortex and flow separation. The difference of heat transfer coefficient induces the large thermal stress, which is one of the major reasons to break of hot components. So, it is required to enhance the heat transfer on the back side of pin-fin to solve the thermal stress problem. This study suggests the pin-fin with inclined jet hole and complex pin-fin/dimple array to enhance the heat transfer on the back side of pin-fin. The heat transfer coefficient is predicted by the numerical analysis, which is performed by CFX 14.0. The numerical results are obtained at Reynolds number, 10,000. The results show that the heat transfer on the back side of pin-fin is increased in both cases. Beside, the wake, which comes from dimple and jet, helps to develop the horseshoe vortex and increase the heat transfer on the next row pin-fin.

Heat Transfer Characteristics depending on the Length of a Plate with Pin-Fin Array in a Horizontal Channel (수평채널에서 핀-휜을 가진 평판의 길이변화에 따른 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young;Lee, Sang-Rog
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2408-2413
    • /
    • 2007
  • Since the heat generation in a chip increases as the components are miniaturized and the computing speed becomes faster, suitable heat dissipation has become one of the primary limiting factors to ensure the reliable operation of the electronic devices. A pin-fin array could be used as an alterative cooling system of the electronic equipment. In this study, convective heat transfer through the pin-fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristics is investigated and compared with the previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

  • PDF

Experiments on the Cooling Characteristics of a Channel with Pin-Fin Array (핀-휜 배열을 이용한 채널의 냉각특성 실험)

  • Kim, Sang-Min;Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, the power consumption and heat generation in an electronic equipment increase as the components are miniaturized and the computing speed becomes faster. Effective cooling method is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the cooling characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer characteristics. The results are compared with the experimental data or correlations of several researchers for the channel flow with pin-fin arrays.

  • PDF

Experiments on the Heat Transfer and Pressure Drop Characteristics of a Channel with Pin-Fin Array (핀-휜을 삽입한 채널의 열전달 및 압력강하 특성 실험)

  • 신지영;손영석;김상민;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.623-629
    • /
    • 2004
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices, which result in more heat generation by the electronic system. Present cooling technology may not be adequate for the thermal management in the current state-of-the-art electronic equipment. Forced convective heat transfer in a channel filled with pin-fin array is studied experimentally in this paper as an alternative cool-ing scheme for a high heat-dissipating equipment. Various configurations of the pin-fin array are selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. In the low porosity region, interfacial heat transfer and pressure drop seem to show different trend compared to the conventional heat transfer process.

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

Design of a Pin-Fin Structure in a Channel Considering the Heat Transfer and Pressure Drop Characteristics (열전달 및 압력강하 특성을 고려한 채널 내 핀-휜 구조물의 설계)

  • Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2006
  • Rapid development of electronic technology requires small size, high density packaging and high power in the electronic devices, which results in more heat generation. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the current state-of-the-art electronic equipment. The aim of the present study is to find out the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices through the analysis and experiment. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. Experimental results are compared with the analyses and correlations of several researchers. Finally, the design guide are provided for the required pressure drop and/or the heat transfer characteristics of the heat exchanger.

Heat transfer and friction loss characteristics of shaped short pin-fin arrays (짧은 못형핀의 형상 변화에 따른 열전달 및 마찰손실 특성)

  • Cho, H.H.;Goldstein, R.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.259-267
    • /
    • 1997
  • Average heat transfer coefficients and friction coefficients have been measured from staggered short pin-fin arrays to investigate the effect of fin shapes. Flow entering into the test section is a fully developed duct flow and the Reynolds number ranges from 5,000 to 25,000 based on fin diameter and average approaching velocity. The fin has three different shapes; uniform-diameter circular fin, two stepped-diameter circular fins. Average heat transfer rates change slightly with the fin shapes. However, friction loss(pressure loss) for the stepped-diameter fins is significantly less than that for the uniform-diameter fin. This results indicate that the stepped-diameter fin arrays in duct flow enhance heat transfer rates largely based on unit pumping power.

  • PDF