• Title/Summary/Keyword: Pin-by-pin

Search Result 1,735, Processing Time 0.033 seconds

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

An Improved Steganography Method Based on Least-Significant-Bit Substitution and Pixel-Value Differencing

  • Liu, Hsing-Han;Su, Pin-Chang;Hsu, Meng-Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4537-4556
    • /
    • 2020
  • This research was based on the study conducted by Khodaei et al. (2012), namely, the least-significant-bit (LSB) substitution combined with the pixel-value differencing (PVD) steganography, and presented an improved irreversible image steganography method. Such a method was developed through integrating the improved LSB substitution with the modulus function-based PVD steganography to increase steganographic capacity of the original technique while maintaining the quality of images. It partitions the cover image into non-overlapped blocks, each of which consists of 3 consecutive pixels. The 2nd pixel represents the base, in which secret data are embedded by using the 3-bit LSB substitution. Each of the other 2 pixels is paired with the base respectively for embedding secret data by using an improved modulus PVD method. The experiment results showed that the method can greatly increase steganographic capacity in comparison with other PVD-based techniques (by a maximum amount of 135%), on the premise that the quality of images is maintained. Last but not least, 2 security analyses, the pixel difference histogram (PDH) and the content-selective residual (CSR) steganalysis were performed. The results indicated that the method is capable of preventing the detection of the 2 common techniques.

Mechanical and Microestructural Properties of Titanium Matrix Composites Reinforced by TiN Particles

  • Romero, F.;Amigo, V.;Salvador, M.D.;Martinez, E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1026-1029
    • /
    • 2006
  • Particulate reinforced titanium composites were produced by PM rout. Differents volumetric percentages of TiN reinforcements were used, 5,10,15 vol%. Samples were uniaxial pressed and vacuum sintered at differents temperatures between $1200-1300^{\circ}C$. Density, porosity, shrinkage, mechanical properties and microstructure were studied. Elastic properties and strength resistance were analysed by flexural strength and tension tests, and after the test, fractured samples were analysed too, obtaining a correlation between the fracture, interparticulated or intraparticulated, and the reinforcement addition.. Hardness and microhardness test were applied too, in order to complete the study about mechanical properties. In order to study wear resistance pin-on-disc test were used. In addition, the temperature influence, the reactivity between matrix and reinforcement, and the microstructures developed were observed by optical and electron microscopy.

  • PDF

Investigation of the Influence of The Story Drift Angle of Buildings Caused by Earthquakes on Elevators

  • Yuichi ONUMA;Satoshi FUJITA;Osamu FURUYA;Yusuke OKI;Toshihiro SANKAI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.160-166
    • /
    • 2024
  • In recent years, as buildings have become taller and taller, the continued usability of elevators after earthquakes has become an important issue. Conventional seismic design of elevators has focused mainly on inertial forces caused by earthquakes, but the influence of the story drift angle of buildings on elevator behavior has been unclear. Therefore, the objective of this study was to clarify the influence of the story drift angle of a building caused by an earthquake on the behavior of elevators through an experiment. The experiment specimens were the counterweight, guide rails, and surrounding components selected from the actual elevator components and mounted on a one-story steel pin frame. A static experiment was conducted using a hydraulic jack to apply force to the specimen by imposing the story drift angle on the steel frame. During the experiment, the reaction force at the end of the jack was monitored, and the displacement and strain of the counterweight, guide rails, and surrounding components were measured. The results of the experiments in one direction showed that even when the elevator components were subjected to a larger story drift angle than assumed in the seismic design of the building, no damage occurred that could lead to fallout.

Physicochemical Characteristics of the Sorghum(Sorghum bicolor L. Moench) Powder following Low Temperature-Microparticulation (저온초미분쇄에 따른 수수가루의 이화학적 특성)

  • Kim, Hyun-Young;Seo, Hye-In;Ko, Jee-Yeon;Kim, Jung-In;Lee, Jae-Saeng;Song, Seuk-Bo;Jung, Tae-Wook;Kim, Ki-Young;Kwak, Do-Yeon;Oh, In-Seok;Jeong, Heon-Sang;Woo, Koan-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.656-663
    • /
    • 2012
  • Two sorghum(Sorghum bicolor L. Moench cv. Hwanggeumchal-susu and Miryang 3) samples were milled using different milling methods, and their physicochemical properties were tested. Particle size was classified into five groups such as pin mill and low temperature-microparticulation(LTM; 10,000, 20,000, 30,000, and 40,000 rpm). The water absorption index (WAI), water solubility index(WSI), and a rapid Visco analyzer(RVA) were used to examine particle size distribution and color differences. Particle size of sorghum flour prepared using LTM was lower than that prepared using a pin mill. Particle size was further reduced by successive dry milling of the LTM flour. Lightness of colored pigments increased when particle size decreased. The WAI of Miryang 3 pin milling(M1) flour was the lowest after LTM, and WSI was higher in the order of M2, M3, M4, and M5. LTM sorghum flour had significantly higher pasting viscosity, as determined using a rapid Visco analyzer. LTM Miryang 3 sorghum flour(M2~M5) flour showed lower breakdown viscosity and higher final viscosity compared to those of M1 flour, resulting in an increased setback value.

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Sliding Wear and Friction Behavior of Electro-Pressure Sintered Fe-Ni and Co-Fe-Ni Compacts (Fe-Ni, Co-Fe-Ni 소결체의 미끄럼 마찰 및 마멸거동)

  • Kwon Yong Jin;Kim Tai-Woung;Kim Yong-Suk
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.224-232
    • /
    • 2005
  • Dry sliding wear behavior of electro-pressure sintered Fe-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered Fe-Ni, Co-Fe-Ni disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. A constant sliding speed of 0.1m/sec was employed. Wear rate was calculated by dividing the weight loss measured after the test by specific gravity and sliding distance. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Wear characteristics of the compacts were discussed as a function of composition of the compacts. Relationship between the wear rate and mechancial properties of the compact was explored, and effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

Development of harmonic drive using cycloide tooth profile (사이크로이드 치형을 이용한 하모닉 감속기의 개발)

  • Lee, Chong-Won;Oh, Se-Hoon;Kim, Jun-Cheol;Jeon, Han-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1166-1173
    • /
    • 1997
  • Due to progress in manufacturing techniques, the performance of the harmonic drive has been improved but not sufficiently. One of the important problems which the current harmonic drive has is that while there is the potential for having a wider tooth contact area, the total number of teeth engaged simultaneously is still small. This is mainly due to the involute tooth profile. Hence, in this study, the cycloid-type tooth profile is developed to improve this problem. This paper represents the design methodology and performance evaluation f the cycloid-type harmonic drive. Cycloide tooth profile was derived by analyzing geometry of the tooth engagement and the contact mechanisms of the tooth which were examined and analyzed by load analysis. The stress due to elastic deformation of a flexspline was also obtained by approximate formula and computer analysis. Finally, the cycloid-type harmonic drive with 1:100 speed ratio was manufactured and the performance of the harmonic drive was evaluated.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

Behaviors of Externally-Stimulated Organic Ultra Thin Films of Fatty Acid Halides (지방산 할로겐화물 유기초박막의 외부자극에 의한 거동)

  • Park, Keun-Ho;Lee, Jun-Ho;Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.102-108
    • /
    • 2009
  • Behaviors of saturated fatty acid halides (CI4, C16, C18) were measured by LB method when the molecules were stimulated by pressure. The saturated fatty acid halides were deposited on the indium tin oxide(lTO) glass by the LB method. The average organic ultra thin film size and the surface roughness of the fatty acid halides thin films were investigated using AFM. It was found that AFM images show small surface roughness ($2.5{\sim}5.0\;nm$) and the organic ultra thin film size of $2.5{\sim}12\;nm$. Both aggregations and pin-holes were also seen on the AFM images. However we found that the surface roughness. These effects seem to be reasonable to be related to the increase of the organic ultra thin film size of fatty acid halides.