• Title/Summary/Keyword: Pin-By-Pin Analysis

Search Result 466, Processing Time 0.025 seconds

The Phase Shift and Phase Error Analysis in the Shearographic System (Shearographic system에서의 위상천이 및 위상오차 분석)

  • Kim, Soo-Gil;Ko, Myung-Sook
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.143-145
    • /
    • 2005
  • We present the method to obtain four speckle patterns with relative phase shift of ${\pi}/2$ passive devices such as wave plate and polarizer, and calculate the phase at each point of the speckle pattern in shearographic system using Wollaston pin And, we analyzed the phase error caused by wave plates used in the proposed method by Jones matrix.

  • PDF

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

Analysis of the Crankshaft Behavior on In-plane and Out-plane Mode at the Firing Stage (엔진 운전시 크랭크샤프트의 면내.외 모드의 거동 해석)

  • Abu Aminudin;Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.319-328
    • /
    • 2006
  • This paper presents a method for analysis of the mechanical behavior of a crankshaft in a four-cylinder internal combustion engine. The purpose of the analysis was to study the characteristics of the shaft in which the pin and arm parts were assumed to have a uniform section in order to simplify the modal analysis. The results of natural frequency transfer function and mode shape were compared with those obtained by experimental work. The results obtained from the comparison showed a good agreement with each other and consequently verified the analysis model. Furthermore, a prediction of crankshaft characteristics under the firing condition, by using the model, was performed. This study describes a new method for analyzing the dynamic behavior of crankshaft vibrations in the frequency domain based on the initial firing stages. The new method used RMS values to calculate the energy at each bearing journal and counter weight shape modification under the operating conditions.

Strength of Unidirectional and Fabric Hybrid Laminate Joints (일방향-평직 복합재 혼합 적층판의 체결부 강도 연구)

  • An,Hyeon-Su;Sin,So-Yeong;Gwon,Jin-Hui;Choe,Jin-Ho;Lee,Sang-Gwan;Yang,Seung-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The failure load and mode of the unidirectional and fabric hybrid composite laminate joints are studied by test and finite element analysis. Test is conducted for the specimens with nine various geometries under pin loading. Finite element analysis is performed considering the contact and friction effects between the pin and laminate by MSC/NASTRAN. Failure is estimated by Tsai-Wu and Yamada-Sun criteria on the characteristic curve. While the failure of the specimens with the small width and edge length are much affected by the joint geometry, the geometry effects are negligible in the specimens with large width and edge length. Finite element analysis based on the characteristic length method reasonably predicts the failure load and mode of the joints.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

Analysis of the Effects of Bore Clearance Due to Skirt Profile Changes on the Piston Secondary Movements

  • Jang, Siyoul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 2002
  • Clearance movements of engine piston are very related to the piston impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study, computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset magnitude to thrust side have better performance that has low side impact during the engine cycle.

Flow Analyses in a Cross-Flow Fan (횡류팬 내부의 유동해석)

  • Lee H G.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.65-70
    • /
    • 2002
  • Cross-Flow Fan(CFF) are widely used lot industrial equipments and household electric appliances. A design method for CFFs, however, has not been well established because of the complexity of the internal flow. Numerical analysis was performed by using STAR-CD. In this study present the internal flow of CFF, which has varies pin number, and their flowrate were compared

  • PDF

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF