• Title/Summary/Keyword: Pillaring

Search Result 6, Processing Time 0.019 seconds

Synthesis of Nanoporous NiO-SiO2 Pillared Clays and Surface Modification of the Pillaring Species (나노다공성 NiO-SiO2 가교화 점토의 합성 및 가교물질의 표면개질 연구)

  • Yoon, Joo-Young;Shim, Kwang-Bo;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.81-85
    • /
    • 2004
  • Nanoporous materials with nanometer-sized pores, are of great interest in the various applications such as selective adsorbents, heterogeneous catalysts and catalyst supports because of their high porosity, surface area, and size selective adsorption properties. This study is aimed to prepare nanoporous catalytic materials on the basis of two-dimersional clay by pillaring of $SiO_2$ sol particles. $SiO_2$ Pillared Montmorillonite (Si-PILM) was prepared by ion exchanging the interlayer $Ni^{2+}$ ions of clay with $SiO_2$ nano-sized particles of which the surface was modified with nicked polyhydroxy cations sach as $Ni_4(OH)_4^{4+}$. Nano-sized $SiO_2$ particles were formed by the controlled hydrolysis of tetraethyl orthosilicate (TEOS). Upon pillaring of $Ni^+$-modified $SiO_2$ nano particles between the clay layers, the basal spacing was expanded largely to $45{\AA}$ and the extremely large specific surface area ($S_{BET}$) of $760m^2/g$ was obtained.

Synthesis and Characterization of Molecular Composite Prepared from Layered Perovskite Oxide, $HLa_2Ti_2NbO_{10}$

  • 홍영식;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.623-628
    • /
    • 1997
  • A layered perovskite oxide, $RbLa_2Ti_2NbO_{10}$, was prepared and investigated for proton exchange and intercalation behaviors. Its protonated form, $Hla_2Ti_2NbO_{10}$, exhibits the Bronsted acidity and reacts with organic amines. Polyoxonuclear cation, 4Al_{13}$, was then introduced into the interlayer by refluxing octylamine-intercalated compound with an $Al_{13}$ pillaring solution. These layered oxides were characterized by X-ray diffractometer, thermogravimeter, FT-infrared spectrometer and elemental analyzer. It is observed that the polyoxonuclear cation-pillared material exhibits a bilayer structure and is thermally more stable than organic counterpart at higher temperatures. The surface area of the pillared material annealed at 400 ℃ was the value of 25.1 m²/g.

Effect of Manganese Promotion on Al-Pillared Montmorillonite Supported Cobalt Nanoparticles for Fischer-Tropsch Synthesis

  • Ahmad, N.;Hussain, S.T.;Muhammad, B.;Ali, N.;Abbas, S.M.;Khan, Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3005-3012
    • /
    • 2013
  • The effect of Mn-promotion on high surface area Al-pillared montmorillonite (AlMMT) supported Co nanoparticles prepared by hydrothermal method have been investigated. A series of different weight% Mn-promoted Co nanoparticles were prepared and characterized by XRD, TPR, TGA, BET and SEM techniques. An increase in the surface area of MMT is observed with Al-pillaring. Fischer-Tropsch catalytic activity of the as prepared catalysts was studied in a fixed bed micro reactor at $225^{\circ}C$, $H_2/CO$ = 2 and at 1 atm pressure. The data showed that by the addition of Mn the selectivity of $C_1$ dropped drastically while that of $C_2-C_{12}$ hydrocarbons increased significantly over all the Mn-promoted Co/AlMMT catalysts. The $C_{13}-C_{20}$ hydrocarbons remained almost same for all the catalysts while the selectivity of $C_{21+}$ long chain hydrocarbons decreased considerably with the addition of Mn. The catalyst with 3.5%Mn showed lowest $C_{21+}$ and highest $C_2-C_{12}$ hydrocarbons selectivity due to cracking of long chain hydrocarbons over acidic sites of MMT.

The Reduction Properties of Nitrate in Water with Palladium and Indium on Aluminum Pillared Montmorillonite Catalyst (팔라디움과 인디움을 담지한 Al 층간가교 몬모릴로나이트 촉매의 수중 질산성질소 환원 특성)

  • Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.621-631
    • /
    • 2018
  • In this study, catalyst was made through incipient wetness method using palladium (Pd) as noble metal, indium (In) as secondary metal, and montmorillonite (MK10) and Al pillared montmorillonite (Al-MK10) as supporters. The nitrate reduction rate of the catalysts was measured by batch experiments where H2 gas was used as reducing agent and formic acid as pH controller. Transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were all used to determine the elemental distribution of Pd, In, Al, and Si on catalysts. It was observed that Al pillaring increased the Al/Si elemental composition ratio and point of zero charge of MK10, but decreased its BET specific surface area and pore volume. The nitrate reduction rate of Al-MK10 Pd/In was 2.0 ~ 2.5 times higher than that of MK10 Pd/In using artificial groundwater (GW) in ambient temperature and pressure. Nitrate reduction rates in GW were 1.2 ~ 1.7 times lower than those in distilled deionized water (DDW). Nitrate reduction rates in acidic conditions were higher than those in neutral condition in both GW and DDW. The amount of produced NH3-N over degraded NO3- at acid conditions was lower than that of neutral condition. Even though the leaching of Pd after reaction was measured in DDW it was not detected when both Al-MK10 Pd/In and MK10 Pd/In were used in GW. The modification of montmorillonite as a supporter significantly increased the reductive catalytic activities of nitrates. However, the ratio of producing ammonia by-products to degraded nitrates in ambient temperature and pressure was similar.

Effects of Sulfur Substitution on Chemical Bonding Nature and Electrochemical Performance of Layered LiMn0.9Cr0.1O2-xSx

  • Lim, Seung-Tae;Park, Dae-Hoon;Lee, Sun-Hee;Hwang, Seong-Ju;Yoon, Young-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1310-1314
    • /
    • 2006
  • Sulfur-substituted $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$ $(0\;\leq\;x\;\leq\;0.1)$ layered oxides have been prepared by solid state reaction under inert atmosphere. From powder X-ray diffraction analyses, all the present lithium manganates were found to be crystallized with monoclinic-layered structure. Electrochemical measurements clearly demonstrated that, in comparison with the pristine $LiMn_{0.9}Cr_{0.1}O_2$, the sulfur-substituted derivatives exhibit smaller discharge capacities for the entire cycle range but the recovery of discharge capacity after the initial several cycles becomes faster upon sulfur substitution. The effect of the sulfur substitution on the chemical bonding nature of $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$has been investigated using X-ray absorption spectroscopic (XAS) analyses at Mn and Cr K-edges. According to Mn K-edge XAS results, the trivalent oxidation state of manganese ion remains unchanged before and after the substitution whereas the local structure around manganese ions becomes more distorted with increasing the substitution rate of sulfur. On the other hand, the replacement of oxygen with sulfur has negligible influence on the local atomic arrangement around chromium ions, which is surely due to the high octahedral stabilization energy of $Cr^{+III} $ ions. Based on the present experimental findings, we have suggested that the decrease of discharge capacity upon sulfur substitution is ascribable to the enhanced structural distortion of $MnO_6$ octahedra and/or to the formation of covalent Li-S bonds, and the accompanying improvement of cyclability would be related to the depression of Mn migration and/or to the pillaring effect of larger sulfur anion.

Characterization and Preparation of Al-Pillared Clay (Aluminium-Pillared Clay의 제조 및 특성)

  • Park, Se-Jun;Ha, Baik-Hyon;Jeong, Soon-Yong;Suh, Jeong-Kwon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.304-309
    • /
    • 1999
  • Aluminum-pillared clay was prepared by the intercalation of Al-hydroxy oligomer into domestic bentonite. The solid products are characterized by XRD, nitrogen adsorption/desorption, EDX, and SEM. The solid products show relatively high specific surface areas in the range of $104{\sim}228m^2/g$, and their specific surface area, micropore surface area, and micropore volume increase with increasing the mole ratio of OH/Al. From the results of pore size distribution calculated by BJH equation, it was found that aluminum-pillared clay also contains much mesopore near $40{\AA}$. These results indicate that Al-hydroxy oligomer was intercalated into bentonite, and aluminum oxide was pillared among the layers of bentonite, and micropore and mesopore was finally developed into layers. As OH/Al mole ratio increases, the thermal stability of aluminum-pillared clay increases. This result can be explained by the fact that the density of layers is increased due to the formation of aluminum pillars.

  • PDF