DOI QR코드

DOI QR Code

Effect of Manganese Promotion on Al-Pillared Montmorillonite Supported Cobalt Nanoparticles for Fischer-Tropsch Synthesis

  • Ahmad, N. (Department of Chemistry, Hazara University) ;
  • Hussain, S.T. (National Centre for Physics, QAU Campus) ;
  • Muhammad, B. (Department of Chemistry, Hazara University) ;
  • Ali, N. (Department of Physics, University of the Punjab) ;
  • Abbas, S.M. (National Centre for Physics, QAU Campus) ;
  • Khan, Y. (National Centre for Physics, QAU Campus)
  • Received : 2013.02.23
  • Accepted : 2013.07.22
  • Published : 2013.10.20

Abstract

The effect of Mn-promotion on high surface area Al-pillared montmorillonite (AlMMT) supported Co nanoparticles prepared by hydrothermal method have been investigated. A series of different weight% Mn-promoted Co nanoparticles were prepared and characterized by XRD, TPR, TGA, BET and SEM techniques. An increase in the surface area of MMT is observed with Al-pillaring. Fischer-Tropsch catalytic activity of the as prepared catalysts was studied in a fixed bed micro reactor at $225^{\circ}C$, $H_2/CO$ = 2 and at 1 atm pressure. The data showed that by the addition of Mn the selectivity of $C_1$ dropped drastically while that of $C_2-C_{12}$ hydrocarbons increased significantly over all the Mn-promoted Co/AlMMT catalysts. The $C_{13}-C_{20}$ hydrocarbons remained almost same for all the catalysts while the selectivity of $C_{21+}$ long chain hydrocarbons decreased considerably with the addition of Mn. The catalyst with 3.5%Mn showed lowest $C_{21+}$ and highest $C_2-C_{12}$ hydrocarbons selectivity due to cracking of long chain hydrocarbons over acidic sites of MMT.

Keywords

References

  1. Dry, M. E. Catal. Today 2002, 71, 227. https://doi.org/10.1016/S0920-5861(01)00453-9
  2. Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692. https://doi.org/10.1021/cr050972v
  3. Schulz, H. Appl. Catal. A 1999, 186, 3. https://doi.org/10.1016/S0926-860X(99)00160-X
  4. Font Freide, J. J. H. M.; Gamlin, T. D.; Graham, C.; Hensman, J. R.; Nay, B.; Sharp, C. Top. Catal. 2003, 26, 3. https://doi.org/10.1023/B:TOCA.0000012982.48191.ab
  5. Li, S.; Krishnamoorthy, S.; Li, A.; Meitzner, G. D.; Iglesia, E. J. Catal. 2002, 206, 202. https://doi.org/10.1006/jcat.2001.3506
  6. Jacobs, G.; Das, T. K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B. H. Appl. Catal. A 2002, 233, 263. https://doi.org/10.1016/S0926-860X(02)00195-3
  7. Li, H.; Wang, S.; Ling, F.; Li, J. J. Mol. Catal. A: Chem. 2006, 244, 33. https://doi.org/10.1016/j.molcata.2005.08.050
  8. Panpranot, J.; Goodwin, J. G., Jr; Sayari, A. J. Catal. 2002, 211, 530. https://doi.org/10.1016/S0021-9517(02)93761-9
  9. Xiong, H.; Zhang, Y.; Liew, K.; Li, J. J. Mol. Catal. A: Chem. 2008, 295, 68. https://doi.org/10.1016/j.molcata.2008.08.017
  10. Prieto, G.; Martínez, A.; Murciano, R.; Arribas, M. A. Appl. Catal. A 2009, 367, 146. https://doi.org/10.1016/j.apcata.2009.08.003
  11. Hussain, S. T.; Mazhar, M.; Nadeem, M. A. J. Nat. Gas Chem. 2009, 18, 187. https://doi.org/10.1016/S1003-9953(08)60107-3
  12. Wang, G.-W.; Hao, Q.-Q.; Liu, Z.-T.; Liu, Z.-W. Appl. Catal. A 2011, 405, 45. https://doi.org/10.1016/j.apcata.2011.07.032
  13. Su, H.; Zeng, S.; Dong, H.; Du, Y.; Zhang, Y.; Hu, R. Appl. Clay Sci. 2009, 46, 325. https://doi.org/10.1016/j.clay.2009.09.002
  14. Zhang, Y.; Shinoda, M.; Tsubaki, N. Catal. Today 2004, 93-95,
  15. Shinoda, M.; Zhang, Y.; Yoneyama, Y.; Hasegawa, K.; Tsubaki, N. Fuel Process. Technol. 2004, 86, 73. https://doi.org/10.1016/j.fuproc.2003.12.004
  16. Wei, M.; Okabe, K.; Arakawa, H.; Teraoka, Y. Catal. Commun. 2004, 5, 597. https://doi.org/10.1016/j.catcom.2004.07.014
  17. Hinchiranan, S.; Zhang, Y.; Nagamori, S.; Vitidsant, T.; Tsubaki, N. Fuel Process. Technol. 2008, 89, 455. https://doi.org/10.1016/j.fuproc.2007.11.007
  18. Nurunnabi, M.; Murata, K.; Okabe, K.; Inaba, M.; Takahara, I. Appl. Catal. A 2008, 340, 203. https://doi.org/10.1016/j.apcata.2008.02.013
  19. Nurunnabi, M.; Murata, K.; Okabe, K.; Inaba, M.; Takahara, I. Catal. Commun. 2007, 8, 1531. https://doi.org/10.1016/j.catcom.2007.01.008
  20. Liu, Y.; Hanaoka, T.; Murata, K.; Okabe, K.; Takahara, I.; Sakanishi, K. React. Kinet. Catal. L 2007, 92, 147. https://doi.org/10.1007/s11144-007-5183-4
  21. Hindermann, J. P.; Hutchings, G. J.; Kiennemann, A. Catal. Rev. 1993, 35, 1. https://doi.org/10.1080/01614949308013907
  22. Mirzaei, A. A.; Faizi, M.; Habibpour, R. Appl. Catal. A 2006, 306, 98. https://doi.org/10.1016/j.apcata.2006.03.036
  23. van der Riet, M.; Copperthwaite, R. G.; Hutchings, G. J. J. Chem. Soc., Faraday Trans. 1 F: Phy. Chem. Condensce Phas. 1987, 83, 2963.
  24. Bezemer, G. L.; Radstake, P. B.; Falke, U.; Oosterbeek, H.; Kuipers, H. P. C. E.; van Dillen, A. J.; de Jong, K. P. J. Catal. 2006, 237, 152. https://doi.org/10.1016/j.jcat.2005.10.031
  25. van der Riet, M.; Hutchings, G. J.; Copperthwaite, R. G. J. Chem. Soc., Chem. Commun. 1986, 798.
  26. Morales, F.; de Smit, E.; de Groot, F. M. F.; Visser, T.; Weckhuysen, B. M. J. Catal. 2007, 246, 91. https://doi.org/10.1016/j.jcat.2006.11.014
  27. Morales, F.; Grandjean, D.; Mens, A.; de Groot, F. M. F.; Weckhuysen, B. M. J. Phys. Chem. B 2006, 110, 8626. https://doi.org/10.1021/jp0565958
  28. Feltes, T. E.; Espinosa-Alonso, L.; Smit, E. D.; D'Souza, L.; Meyer, R. J.; Weckhuysen, B. M.; Regalbuto, J. R. J. Catal. 2010, 270, 95. https://doi.org/10.1016/j.jcat.2009.12.012
  29. Martinez, M. J.; Fetter, G.; Domunguez, J. M.; Melo-Banda, J. A.; Ramos-Gomez, R. Microporous and Mesoporous Mater. 2003, 58, 73. https://doi.org/10.1016/S1387-1811(02)00592-9
  30. Liu, Y.; Murata, K.; Okabe, K.; Inaba, M.; Takahara, I.; Hanaoka, T.; Sakanishi, K. Top. Catal. 2009, 52, 597. https://doi.org/10.1007/s11244-009-9239-8
  31. Hussain, S. T.; Ahmad, N.; Muhammad, B. Current. Catal. 2012, 1, 24.
  32. Bineesh, K. V.; Kim, M.-I.; Lee, G.-H.; Selvaraj, M.; Park, D.-W. Appl. Clay Sci. 2012, 74, 127.
  33. Bineesh, K. V.; Kim, D.-K.; Kim, D.-W.; Cho, H.-J.; Park, D.-W. Energy. Environ. Sci. 2010, 3, 302. https://doi.org/10.1039/b921937d
  34. Bineesh, K. V.; Kim, S.-Y.; Jermy, B. R.; Park, D.-W. J. Ind. Eng. Chem. 2009, 15, 207. https://doi.org/10.1016/j.jiec.2008.10.006
  35. Bineesh, K. V.; Kim, D.-K.; Kim, M.-I. L.; Park, D.-W. Appl. Clay Sci. 2011, 53, 204. https://doi.org/10.1016/j.clay.2010.12.022
  36. Cañizares, P.; Valverde, J. L.; Sun Kou, M. R.; Molina, C. B. Microporous and Mesoporous Mater. 1999, 29, 267. https://doi.org/10.1016/S1387-1811(98)00295-9
  37. Bineesh, K. V.; Kim, D.-K.; Cho, H.-J.; Park, D.-W. J. Ind. Eng. Chem. 2010, 16, 593. https://doi.org/10.1016/j.jiec.2010.03.014
  38. Das, D.; Ravichandran, G.; Chakrabarty, D. K. Catal. Today 1997, 36, 285. https://doi.org/10.1016/S0920-5861(96)00227-1
  39. Koh, D. J.; Chung, J. S.; Kim, Y. G. Ind. & Eng. Chem. Res. 1995, 34, 1969. https://doi.org/10.1021/ie00045a006
  40. Zhang, J.-L.; Ren, J.; Chen, J.-G.; Sun, Y.-H. Acta Phys-Chim Sin. 2002, 18, 260.
  41. Tan, B. J.; Klabunde, K. J.; Tanaka, T.; Kanai, H.; Yoshida, S. J. Am. Chem. Soc. 1988, 110, 5951. https://doi.org/10.1021/ja00226a004
  42. Voss, M.; Borgmann, D.; Wedler, G. J. Catal. 2002, 212, 10. https://doi.org/10.1006/jcat.2002.3739
  43. Martínez, A. N.; Lopez, C.; Márquez, F.; Diaz, I. J. Catal. 2003, 220, 486. https://doi.org/10.1016/S0021-9517(03)00289-6
  44. Akhmedov, V. M.; Al-Khowaiter, S. H. Catal. Rev. 2007, 49, 33. https://doi.org/10.1080/01614940601128427
  45. Colley, S.; Copperthwaite, R. G.; Hutchings, G. J.; Van der Riet, M. Ind. & Eng. Chem. Res. 1988, 27, 1339. https://doi.org/10.1021/ie00080a001
  46. Wang, H.; Yang, Y.; Xu, J.; Wang, H.; Ding, M.; Li, Y. J. Mol. Catal. A. Chemicl. 2010, 326, 29. https://doi.org/10.1016/j.molcata.2010.04.009
  47. Hussain, S. T.; Larachi, F. Journal of Trace and Microprobe Techniques 2002, 20, 197. https://doi.org/10.1081/TMA-120003724
  48. Kang, S.-H.; Ryu, J.-H.; Kim, J.-H.; Sai Prasad, P. S.; Bae, J. W.; Cheon, J.-Y.; Jun, K.-W. Catal. Lett. 2011, 141, 1464. https://doi.org/10.1007/s10562-011-0626-y
  49. Ngamcharussrivichai, C.; Imyim, A.; Li, X.; Fujimoto, K. Ind. Eng. Chem. Res. 2007, 46, 6883. https://doi.org/10.1021/ie070099j
  50. Dalai, A. K.; Davis, B. H. Appl. Catal. A 2008, 348, 1. https://doi.org/10.1016/j.apcata.2008.06.021
  51. Bao, J.; He, J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Angewandte Chemie International Edition 2008, 47, 353. https://doi.org/10.1002/anie.200703335
  52. Liu, Z. W.; Li, X. H.; Asami, K.; Fujimoto, K. Catal. Today 2005, 104, 41. https://doi.org/10.1016/j.cattod.2005.03.030
  53. Das, D.; Ravichandran, G.; Chakrabarty, D. K. Appl. Catal. A 1995, 131, 335. https://doi.org/10.1016/0926-860X(95)00141-7
  54. Copperthwaite, R. G.; Hutchings, G. J.; Van der Riet, M.; Woodhouse, J. Ind. & Eng. Chem. Res. 1987, 26, 869. https://doi.org/10.1021/ie00065a002
  55. Dinse, A.; Aigner, M.; Ulbrich, M.; Johnson, G. R.; Bell, A. T. J. Catal. 2012, 288, 104. https://doi.org/10.1016/j.jcat.2012.01.008

Cited by

  1. Synthesis of Well-Defined, Surfactant-Free Co3O4 Nanoparticles: The Impact of Size and Manganese Promotion on Co3O4 Reduction and Water Oxidation Activity vol.148, pp.1, 2018, https://doi.org/10.1007/s10562-017-2213-3
  2. Recent Advances in Bifunctional Catalysts for the Fischer-Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas vol.58, pp.35, 2013, https://doi.org/10.1021/acs.iecr.9b01141