• Title/Summary/Keyword: Pillar stability

Search Result 86, Processing Time 0.023 seconds

Influence of interaction between coal and rock on the stability of strip coal pillar

  • Gao, W.
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.151-157
    • /
    • 2018
  • The constrained conditions of roof and floor for the coal pillar affect the strength of coal pillar very seriously. To analyze the influence of rock mass for the roof and floor on the stability of coal pillar comprehensively, one method based on the mechanical method for the composite rock mass was proposed. In this method, the three rock layers of roof, floor and coal pillar are taken as the bedded composite rock mass. And the influence of rock mass for the roof and floor on the elastic core of coal pillar has been analyzed. This method can obtain not only the derived stress by the cohesive constraining forces for the coal pillar, but also the derived stress for the rock mass of the roof and floor. Moreover, the effect of different mechanical parameters for the roof and floor on the stability of coal pillar have been analyzed systematically. This method can not only analyze the stability of strip coal pillar, but also analyze the stability of other mining pillars whose stress distribution is similar with that of the strip coal pillar.

The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings (다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석)

  • Min, Hyung-Ki;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim;Genis, Melih;Yavuz, Mahmut
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.463-475
    • /
    • 2022
  • In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

Evaluation of the influence of pillar width on the stability of a twin tunnel (필라폭이 병설터널의 안정성에 미치는 영향 평가)

  • You, Kwang-Ho;Kim, Jong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Recently, considering the aspects of disaster prevention and environmental damage, the construction of a twin tunnel is increasing. When constructing a twin tunnel, the stresses are concentrated at the pillar so that stability of the tunnel is decreased. Since the previous studies on the behavior of a twin tunnel pillar are mainly restricted to the estimation of the tunnel behavior and the analysis of surface settlement, there is a limit to a quantitative stability estimation of the pillar. Therefore, it was quantitatively investigated how the pillar width of a twin tunnel affects its stability. To ensure this end, global tunnel safety factors obtained numerically using shear strength reduction technique, local safety factors of a pillar using the equation that Matsuda et al. suggested, and strength/stress ratios of the pillar were estimated and their results were analyzed for two sections with different rock covers. For a reasonable design of a twin tunnel pillar, it was turned out that strength/stress ratio, the local pillar safety factor, and global tunnel safety factor should be used interrelatedly rather than independently.

Stability Estimation of the Pillar between Twin Tunnels Considering Various Site Conditions (다양한 현장조건을 고려한 병설터널 필라의 안정성평가)

  • Kim, Ju-Hwan;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.109-119
    • /
    • 2017
  • A lot of twin tunnels were modelled with different pillar widths, rock mass classes and stress ratios in order to consider various site conditions, and the stabilities of the pillars were estimated by numerical analyses and scaled model tests. The strength-stress ratios of the pillar were obtained from three different methods which were using the stresses appeared at the middle point, the whole average and the left/right edges of the pillar. The strength-stress ratio of the pillar edges showed relatively conservative values among them, and it was also practically consistent with the tunnel excavating steps comprising the construction sequence analyses which included the partial excavation and the support system. Scaled model tests were also performed to investigate the tunnel stability, where it was found that cracks were progressively generated from the pillar edges toward the middle point of the pillar. Therefore, in order to both prevent the local damage of pillar and conservatively estimate the tunnel stability, it was thought to be an appropriate method using the strength-stress ratio obtained from the left/right edges of the pillar.

Influence of Pillar Width on the Stability of Twin Tunnels Using Scaled Model Tests (쌍굴터널 간 이격거리가 터널 안정성에 미치는 영향에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2015
  • Scaled model tests were performed to investigate the influence of pillar width, rock strength and isotropy/anisotropy on the stability of twin tunnels. Test models had respectively different pillar widths, uniaxial compressive strengths of modelling materials and model types, where both the deformation behaviors around tunnels and the biaxial pressure data at a time of pillar cracking were analysed. The cracking pressures of the higher strength models were higher than the lower strength models, whereas the percentage of cracking pressure to uniaxial compressive strength of modelling materials showed an opposite tendency. The cracking pressures of the shallower pillar width models were lower than the thicker models, moreover the percentage of that showed a same tendency. It has been found that the pillar width was one of the main factors influencing on the stability of twin tunnels. Model types such as isotropy/anisotropy also influenced on the stability of twin tunnels. The anisotropic models showed lower values of both cracking pressures and the percentage of that than the isotropic models, where the pillar cracks of anisotropic models were generated with regard to the pre-existing joint planes.

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Kamran, Muhammad;Shahani, Niaz Muhammad;Armaghani, Danial Jahed
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.107-121
    • /
    • 2022
  • Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.

Review of Mechanical Behaviors of Pillar in Large Parallel Tunnel (대단면 근접병설터널에서의 필러부 거동특성 검토)

  • Sin, Young-Wan;Kim, Young-Geun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.131-144
    • /
    • 2010
  • The design and construction of tunnels has been followed an large parallel tunnels with a small clearance because of the various conditions. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The stability of pillar is very important for the ensure the stability of the large parallel tunnels. In this study, the analysis of stress state of pillar at various construction cases is reviewed to investigate the mechanical behaviour of tunnels and stability of the pillar.