• Title/Summary/Keyword: Pile material strength

Search Result 77, Processing Time 0.024 seconds

A Study on the Improvement Effects of Soft Ground through In-Situ Construction of Quick Lime Pile (생석회파일 현장시험시공 통한 연약지반 개량효과에 관한 연구)

  • 천병식;고갑수;이용한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.41-48
    • /
    • 2000
  • Most land development projects and large scale civil works require a great amount of sand. And sand is also the most favorable material for soft ground improvement. The demand for sand is soaring rapidly due to increased number of projects regardless of its limited supply. Therefore, it is not difficult to predict that sand may become depleted and no longer be available as ground improvement material in the near future. Against this backdrop, developing an inexpensive sand-substitution material with an efficient accessibility will be necessary and urgently called for. So quick lime could be recommended as the substitutional material for sand. Quick lime is now preferred by forward developed nations. If Korea is able to take advantage of its abundant supply, economical efficiency could be achieved through massive production as well as being able to take advantage of utilization of natural resources. In this respect the purpose of this paper was to estimate improvement effect of soft ground though in-situ construction of quick lime pile. In-situ construction was peformed in road construction site of soft clay and in this study quick lime from Dan-yang that was estimated prominently in aspect of engineering characteristics was used. Quick lime piles were installed by 1.5m, 2.0m, 3.0m spacing to confirm improvement effect according to spacing and installed piles are 0.4m in diameter, up to 5m in length and the density of quick piles installed is 1.4 t/㎥. Vibrating wire pore water pressure cell was installed to confirm consolidation characteristics in surrounding of quick lime piles and both laboratory test and field test were carried out to confirm strength increase. In conclusion, soft ground improvement by quick lime piles was confirmed.

  • PDF

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (I) - Material Strength - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (I) - 재료 강도 -)

  • Kim, Sung-Ryul;Lee, Juhyung;Park, Jae-Hyun;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.259-266
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the numerical models and the related input parameters were analyzed to simulate the axial load-movement relations, which were obtained from the compression loading tests for the cylindrical specimens of the steel pipe, the concrete, and the steel-concrete composite. As the results, the behavior of the steel pipe was simulated by the von-Mises model and that of the concrete by the strain-softening model, which decreases cohesion and dilation angles as the function of plastic strains. In addition, the reinforcing bars in the concrete were simulated by applying the yielding moment and decreasing the sectional area of the bars. The applied numerical models properly simulated the yielding behavior and the reinforcement effect of the steel-concrete composite piles. The parametric study for the real-size piles showed that the material strength of the steel-concrete composite pile increased about 10% for the axial loading and about 20~45% for the horizontal loading due to the reinforcement effect by the surrounding steel pipe pile.

Development of Expandable Steel Pipe Piles to Improve Bearing Capacity (지지력 향상을 위한 확장형 강관말뚝에 관한 연구)

  • Kim, Uiseok;Kim, Junghoon;Kim, Jiyoon;Min, Byungchan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.5-13
    • /
    • 2021
  • Expandable steel pipe piles have been developed to ensure stability and reduce construction costs during underground floor remodeling and extension work. Expandable steel pipe piles are more economical and stable than micropiles. Extensible steel pipe pile is a method of improving the performance of steel pipes by expanding steel pipes underground. In this paper, the changes in buckling strength according to the shape of steel pipes in an extended steel pipe pile were identified, a numerical analysis model was developed to determine the expended part effect of bumps due to steel pipe expansion, and the optimal steel pipe expansion was calculated through material tests. The larger the expansion diameter of the steel pipe and the greater the number of expanded part, the greater the buckling strength. Numerical results showed that the number of expanded part has a greater effect on buckling strength than the expansion rate. When the expansion rate is more than 1.2 times, it can be seen that as the number of expanded part increases, the effect of increasing buckling strength increases significantly. It was also noted that the expanded part effect of the bumps occur significantly when the extension angle is less than 45° and the expansion rate is 1.3 times higher. When the steel pipe is failure, the expanded rate is 20 to 32%, averaging 25.4%. Through the material test, it was analyzed that it is desirable to limit the maximum expansion rate for performing steel pipes to 16%.

Mechanical Properties of Filling Materials for Bored Pile in Rock (암반매입말뚝을 위한 주면고정액의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Shin, Mingun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.637-645
    • /
    • 2017
  • Jeju Island is composed of irregular volcanic rock layers formed by several volcanic activities. Since structure such as the offshore wind turbine has to support considerably large over turning moment due to long distance from foundation to load point and relatively large horizontal load. Pile foundations are needed to economically support such structure even in the case of rock layer. Therefore, in this study, mechanical performances are estimated by mixing ratio of water, cement, and sand to figure out optimal mixing ration of filling material for pile penetrated to rocky layers, and outcomes of this study are compared and analyzed with results of other researches. In the same conditions, mechanical performances of the mortar (S/(S+C)=20~40%) are better than those of cement paste and soil cement. On the basis of major outcome of this study, appropriate range of mixing and a strengthening model are suggested.

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

Assessment of Yield Characteristics of Gas Pipeline Materials by Observing Surface-Local Deformation (미소 표면변형 관찰을 통한 가스배관 부재의 항복특성 평가)

  • Lee, Yun-Hee;Baek, Un-Bong;Cheong, In-Hyeon;Nahm, Seung-Hoon;Lee, Sang-Houck
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • A combination of the instrumented indentation and 3D morphology measurement has been tried in order to perform a real-time property measurement of degraded materials in gas pipelines; three-dimensional indent morphologies were recorded using a reflective laser scanner after a series of insturmented indentations on three metallic specimens. Dimensions of the permanent deformation zone and contact boundary were analyzed from the cross-sectional profile over an remnant indent and used for estimating yield strength and hardness, respectively. Estimated yield strength was comparable with that from uniaxial tensile test and actual hardness implying material pile-up effects was lower than the calculated value from indentation curve by $20{\sim}30%$. It means that this 3D image analysis can explain the material pile-up effects on the contact properties. Additionally, a combined system of indentation and laser sensor was newly designed by modifying a shape of the indentation loading fixture.

  • PDF

Shear Characteristics of a SCP Ground with Different Length of Sand Pile and Replacement Ratio (모래말뚝 설치심도 및 치환율이 다른 SCP지반의 전단특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Lee, Young-Yoel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.9-18
    • /
    • 2011
  • This paper presents shear characteristics of a ground improved by sand piles. The sand piles have different length and diameter depending on the depth of a clayey layer. A series of CU triaxial compression tests are carried out on specimens covered with/without soft material which is similar to geotextile. The results show that the shear strength and stress ration increase as the length and the diameter of the sand pile increase. In addition, covering the specimen with the soft material appears to affect those characteristics as well. The increase of cohesion seems to be more remarkable compared to internal frictional angle.

Strength of concrete for PHC pile Replacing the silica to Waste Concrete Powder (규사를 폐콘크리트 미분말로 대체한 PHC 파일용 콘크리트의 강도특성)

  • Seo, Eun-Seok;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.9-10
    • /
    • 2015
  • Waste Concrete Powder will be generated during the manufacture of construction waste as recycled aggregate Waste concrete. The main component of the waste concrete Powder is a silica-based composition 51% SiO2, waste concrete cement-based composition Al2O3 10%, CaO 26% component are contained. The material is silica sand of PHC piles should experiment by replacing the Waste Concrete Powder. The compressive strength results are as follows. 25% when the Silica was replaced 32.5Mpa, when 50% have replaced 43.4Mpa, when 75% have replaced 45.3Mpa was measured. Compared with the non-replaced test sample it appears that the strength increases. Therefore, it is determined that the practical use of the PHC piles by replacing silica via this experiment is possible.

  • PDF

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.