• Title/Summary/Keyword: Pile material

Search Result 259, Processing Time 0.022 seconds

Experimental study of file filling meterial with A thickener (증점제를 첨가한 매입말뚝 주면고정액의 실험적 연구)

  • Ko, Hye-Bin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.21-22
    • /
    • 2020
  • In this study, the pile filling materials of the pile in drilled piling was studied. cement milk is mostly used as the filling materials of bored pile. The use of filling material based on cement milk is inefficient at field construction because it needs a lot of the charging mass. thickening agent was added to the cement milk to perform settlement estimation experiment on a circular cylinder, and as a result of examining the compressive strength of the day, it was found that the settlement estimation was significantly reduced. However, the strength was relatively low, it was confirmed that there was no problem with the regulation because the main surface fixative required relatively low strength.

  • PDF

Anti-Seismic Evaluation of Waterproofing Materials for Positive-Side wall and pile wall of Underground Concrete Structures (합벽구간 및 지하구조물 외벽에 사용되는 방수재료 내진 성능실험방법)

  • Oh, Kyu-hwan;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.210-211
    • /
    • 2021
  • This study introduces and demonstrates the application of an experimental regime for anti-seismic performance evaluation of waterproofing materials to used for concrete pile walls. Concrete pile walls are subject to high degree of seismic load, and the occurring stress can affect the waterproofing integrity of the structure, but there is currently no existing methodology or standard for evaluating this property of waterproofing materials. To propose and conduct this evaluation, a new testing apparatus was designed and manufactured intended to be able to test an installed waterproofing material's seismic resistance performance.

  • PDF

Design Efficiency Improvement Method Research for High Strength Steel Pipe Pile at Gwangyang Area (광양지역 고강도 강관 항타말뚝의 설계효율 향상 방안 연구)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.231-240
    • /
    • 2011
  • Various pile load tests were carried out at Gwangyang district for 10 different piles in order to analyze the characteristcs of steel pile using high strength steel and high driving energy. Pile drivability results showed that PHC piles needed highest total blow count even with the shortest pile length and high strength steel pipe piles showed smallest total blow count eventhough driven to a more hard ground condition with longer pile length. Pile dynamic analysis results showed that for PHC pile and general steel pipe pile the allowable pile design load was decided by the allowable material strength but for high strength steel pipe pile the design load can be decided according to the ground bearing capacity. Static load test and load transfer test results showed that the pile design efficiency could be improved over 80% allowing lesser number of piles necessary for a more economical solution. Set-up effects was analyzed and regression equation for the site ground condition was derived. Bearing capacity was checked with widely used design equation and the limitation of current design method and future technology development on this subject is dicussed in this paper.

Analysis on Consolidation Behavior of Soft Ground with Reactive Drain Pile (반응성 배수파일이 타설된 지반의 압밀거동 분석)

  • Kim, Beomjun;Oh, Myounghak;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Geotechnical evaluation on the reactive drain pile which can achieve simultaneously both the soft ground improvement and the remediation of contaminated pore water in reclamation site was performed. Applicability of steel-making slag used as a inside reactive material was confirmed. To investigate the consolidation characteristics of the soft ground improved by reactive drain pile, testing devices to form and install the reactive drain pile were developed and laboratory tests were performed according to the existence of outside sand drain and the length of impermeable barrier. Test results showed that the consolidation time was decreased as the shortening of impermeable barrier. However, the effect of outside sand drain on consolidation time was dominant compared with the length of impermeable barrier.

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

A Study on the haracteristics of Grouting Material to Decrease Negative Skin Fricton (부마찰력 저감용 주입재의 특성 연구)

  • Jung, Sung-Min;Kim, Che-Min;Hwang, Jeong-Hwan;Lee, Kyung-Jun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1104-1113
    • /
    • 2010
  • In order to reduce negative skin friction uses bitumen most plentifully. But, Bitumen is expensive very of 1.5 or more times of pile material expense. The bitumen will be able to substitute it is nescessary. It was researched that it would be able to bitumen substitutions from in products which is produced from domestic in this study. This was composed with most bentonite, added some cement. When it is used this product in the model test, the reduction ratio appear of 85% or more. In this result, this product as the reduction material is confirmed that has enough ability. Additional research leads, the product according to pile construction method must verify the reduction effect of negativ skin friction in field test.

  • PDF

Drainage Characteristics of Copper Slag Compaction Pile Installed in Clay Based on the Laboratory Consolidation Model Test (대형압밀시험기를 이용한 동슬래그 다짐말뚝의 배수 특성)

  • 천병식;정헌철;김경민;조한영
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.552-557
    • /
    • 2001
  • Copper slag is the by-producted material on the proceeding of refining the copper. To verify applications of copper slag to vertical drain material can substitute for the sands in ground improvement, laboratory soil tests and consolidation model tests were conducted. The results of consolidation model test was analyzed as the hyperbolic method. The hyperbolic method assumes that the settlement(s) versus time(t) behavior approaches a straight line describes a hyperbolic reaction. The inverse of the slope of the line would then yield the ultimate settlement. Through in this study, copper slag is compatible with vertical drain material as like sands. Copper slag compaction pile promote the consolidation settlement.

  • PDF

Analysis of the Applicability of Ground Stabilizer Using Recycled Resources as Prebored Piles (매입말뚝 주면고정액으로 순환자원을 재활용한 지반안정재의 활용 가능성 분석)

  • Seo, Se-Gwan;Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 2021
  • In this study, tests were performed to analyze the feasibility of using the ground stabilizer from recycled resources such as blast furnace slag powder as filling material of prebored piles. For this, specimens were prepared by applying 70% and 83% of the general water/binder ratio of the filling material of prebored piles. And compression test, model test, and shaking table test were performed to determine the compressive strength, skin friction on the surface between prebored pile and filling material, and seismic performance of ground stabilizer. As a result of the tests, the compressive strength exceeded the relevant domestic standards, and the skin friction was equivalent to that of ordinary portland cement. In addition, the amount of vertical and horizontal displacement caused by earthquakes was found to be much smaller than the domestic standard. Therefore, when considering the test results comprehensively, it is judged that the feasibility of using a ground stabilizer from recycled resources as filling material for prebored pile is sufficient.

Effects of Pile Diameter on the Lateral Behavior of Offshore Pile in the Southwestern Area of Korea (서남해안 해상풍력단지 말뚝의 직경에 따른 횡방향 거동)

  • Lee, In;Choi, Younggyun;Kim, Honglak;Kwon, Osoon;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the effect of pile diameter on the lateral behavior of offshore pile for wind turbine. The material parameters of the soils were estimated through SPT on the Southwestern offshore area in Korea, where the first wind farm is planned. The FDM software, FLAC3D, and LPile were adopted to derive the load-displacement curve, p-y curve, and maximum bending moment at a specified displacement. It was found that the results from softwares significantly differ and the LPile could overestimate the allowable capacity. The maximum bending moment along the pile with 2m diameter could be as large as four times the bending moment with 1m diameter. Similar trend was observed for the allowable lateral capacity.

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF