• Title/Summary/Keyword: Pile loading test

Search Result 251, Processing Time 0.027 seconds

An Experimental Study on the Load-settlement Behavior and Settlement-reducing Effect of the Disconnected Piled Raft Foundation (말뚝보강기초의 하중-침하량 거동 및 침하감소효과에 대한 실험적 연구)

  • Lee Yeong-Saeng;Hong Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.95-104
    • /
    • 2006
  • For the interests in the economical and safe design of foundation system, the concern on the piled raft or disconnected piled raft foundation system is increasing now. In this study, the behavior and the effects of the disconnected piled raft foundation not studied actively in this country were examined using the triaxial compression tests in place of laboratory model tests. The triaxial test samples were prepared with Jumunjin standard sand and the carbon rods, which simulate the ground soil and piles respectively. After the sample in which carbon rods were arranged was laid inside the triaxial chamber, the confining pressure was applied and then loading test was conducted. To analyze the reinforcing effects of the disconnected piled raft foundation, a few number of tests were carried out by changing the number, the diameter and the length of the model piles. As a result of this study, in the disconnected piled raft foundation system, even though the number of pile is few and the diameter of pile is small, the settlement of the foundation system decreased greatly.

Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope (실물 재하시험을 통한 성토사면에 근접한 철도 전철주기초의 저항모멘트 평가)

  • Lee, Su-Hyung;Lee, Sung-Jin;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The moment responses of electric pole foundations for a railway were investigated using real-scale load tests. Large overturning moments were applied to two circular rigid piles with a 0.75 m diameter and a 2.5 m embedded depth; the circular rigid piles were installed in an actual railway embankment fill. Two different loading directions-toward the fill slope and toward the track -were applied to evaluate the influence of the fill slope on the moment capacities of the foundations. It was found that the failure of the foundations that were constructed according to Korean railway practices exhibited a sudden overturning pattern without any significant pre-failure displacement. The moment capacity toward the fill slope was less than the moment capacity toward the track by 30%. From the test results, the geometry factor (K), which accounted for the reduction of the moment capacity, due to the fill slope, was 0.7. Moment capacities determined from the load tests were compared with those predicted from three existing design methods, and their applicability was discussed.

Effects of Zr-hydride distribution of irradiated Zircaloy-2 cladding in RIA-simulating pellet-clad mechanical interaction testing

  • Magnusson, Per;Alvarez-Holston, Anna-Maria;Ammon, Katja;Ledergerber, Guido;Nilsson, Marcus;Schrire, David;Nissen, Klaus;Wright, Jonathan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • A series of simulated reactivity-initiated accident (RIA) tests on irradiated fully recrystallized boiling water reactor Zircaloy-2 cladding has been performed by means of the expansion-due-to-compression (EDC) test method. The EDC method reproduces fuel pellet-clad mechanical interaction (PCMI) conditions for the cladding during RIA transients with respect to temperature and loading rates by out-of-pile mechanical testing. The tested materials had a large variation in burnup and hydrogen content (up to 907 wppm). The results of the EDC tests showed variation in the PCMI resistance of claddings with similar burnup and hydrogen content, making it difficult to clearly identify ductile-to-brittle transition temperatures. The EDC-tested samples of the present and previous work were investigated by light optical and scanning electron microscopy to study the influence of factors such as azimuthal variation of the Zr-hydrides and the presence of hydride rims and radially oriented hydrides. Two main characteristics were identified in samples with low ductility with respect to hydrogen content and test temperature: hydride rims and radial hydrides at the cladding outer surface. Crack propagation and failure modes were also studied, showing two general modes of crack propagation depending on distribution and amount of radially oriented hydrides. It was concluded that the PCMI resistance of irradiated cladding under normal conditions with homogenously distributed circumferential hydrides is high, with good margin to the RIA failure limits. To further improve safety, focus should be on conditions causing nonfavorable hydride distribution, such as hydride reorientation and formation of hydride blisters at the cladding outer surface.

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

Comparison of Splices between Bolts and Welding Spliced PHC Piles (볼트 수직이음 PHC말뚝와 용접이음 PHC말뚝의 이음부 거동 비교)

  • Kim, Myunghak;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.93-103
    • /
    • 2018
  • Behaviors of splices between bolts and welding spliced PHC piles using the tensile strength test were analyzed. The bolts spliced PHC piles, which were tightened over $200N{\cdot}m$ tightening torque, showed straight V shaped line at splices at the lowest 20 N load. Both sides of PHC piles stayed straight, so the full section of bolts spliced piles did not show the unifying behavior, which was the most important performance requirement as pile. Other bolts spliced PHC piles, tightened with $20N{\cdot}m$ loosening torque, also showed the same straight V shaped line at splices for each step of loading. The full section of bolts spliced piles did not return to the initial position after each step of unloading and did not show the elastic material behavior. The splices quality of bolts spliced piles is much lower than that of welding spliced piles with respect to displacement of splices during each step of loadings, residual displacements during each step of unloadings, and failure loads. Results showed that bolts spliced PHC piles, tightened with both over $200N{\cdot}m$ and as low as $20N{\cdot}m$ torque, fell short of performance requirements of spliced PHC pile.

A Study on the Ultimate End Bearing Capacity of Drilled Shafts in Rocks (암반에 설치된 현장타설말뚝의 극한선단지지력에 관한 연구)

  • Jeong, Sangseom;Lee, Jaehwan;Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.5-15
    • /
    • 2013
  • The end bearing capacity of rock-socketed drilled shafts under axial loading is investigated by Hoek-cell tests and a numerical analysis. From the test results, it was found that the ultimate end bearing capacity ($q_{max}$) was influenced by pile diameter, rock mass modulus and the spacing of discontinuity. A new ultimate end bearing capacity method is proposed by taking end bearing capacity influence factors, including rock mass discontinuity, based on field data. Through comparisons with other field data, the proposed $q_{max}$ method represents a definite improvement in the prediction of ultimate end bearing capacity of rock-socketed drilled shafts.

Three-Dimensional Numerical Analysis for Verifying Behavioral Mechanism and Bearing Capacity Enhancement Effect According to Tip Elements (선단 고정 지압구의 거동 메커니즘과 형상에 따른 지지력 증대효과 검증을 위한 3차원 수치해석)

  • Lee, Seokhyung;Kim, Seok-Jung;Han, Jin-Tae;Jin, Hyun-Sik;Hwang, Gyu-Cheol;Lee, Jeong-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.53-67
    • /
    • 2022
  • Micropiles are cast-in-place-type piles with small diameters. They are widely used for the foundation reinforcement of existing buildings and structures because this technique is easy to construct and economic. A base expansion structure is developed following the mechanism of radial expansion at the pile tip under compression. Numerical analysis, durability tests, and centrifuge tests have been conducted using the base expansion structure. In this study, three-dimensional numerical modeling was performed to describe the behavioral mechanism of the base expansion structure using steel bar penetration under compressive loading, and numerical analyses using centrifuge test conditions were performed for the comparative studies. Additionally, the base structure was modified based on the results of lab-scale analyses, and the bearing capacities of micropiles were compared using field-scale numerical analyses under various ground conditions.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

Uplift Capacity of Wood Pile for Greenhouse Foundation (온실 기초용 나무말뚝의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Wood piles are rarely used in the construction of a greenhouse in Korea, but they are relatively more often used in other countries, such as the Netherlands. There are several advantages associated with wood piles: they are more cost-effective, less time-consuming, and more ecofriendly than the steel pipes (SPs) and pre-stressed highstrength (PHC) piles. However, one of the limiting conditions is that they have to be installed below the groundwater level to prevent decay. Since the groundwater levels are generally high in the reclaimed lands in Korea, wood piles are expected to be used often as reinforcements for foundations of greenhouses in these areas. In this study, we measured the uplift capacities of wood piles through in-situ uplift capacity tests with an aim to provide basic design data for wood pile foundations. In order to test their applicability, we then compared these experimentally measured ultimate uplift capacities with the ones calculated through some of the existing theoretical equations. The wood piles used in the loading tests were made of softwood (pine wood), and the tests were performed using piles with different diameters (∅25cm and ∅30cm) and embedded depths (1m, 3m, and 5m). The test results revealed that the uplift capacity of the wood piles showed a clear linearly increasing tendency in proportion to the embedded depth, with the ultimate uplift capacities for the diameters 25cm and 30cm being 9.38 and 10.56tf, respectively, at the embedded depth of 5m; thus demonstrating uplift capacities of ${\geq}9tf$. The comparison between the actually measured values of the uplift capacity and the ones calculated through equations revealed that the latter, which were obtained using the ${\alpha}$ method, were generally in an approximate agreement with the in-situ measured values.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.