• Title/Summary/Keyword: Pile bearing capacity

Search Result 532, Processing Time 0.022 seconds

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

On the Counter Plan of Foundation Method being based on N-Value in the Soft-Ground (연약지반에 있어 N치에 의한 기초공법 대책연구)

  • Lee, Y.H.;Lee, D.M.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.69-90
    • /
    • 1996
  • This study is related to save the bearing capacity from using Meyerhof formula namely, static mechanics formula with the S.P.T(N value) of the soft ground and is to choose the soft ground improvement method by the using of total load for the proper method of the pile foundation and then to design the most suitable pile foundation to fit the actual circumstance. The purpose of this study is calculating the diameter of the pile foundation by static mechanics formula and introducing the optimum design condition from the result of the bearing capacity for using N value of the S.P.T obtained from the deep soft ground about the piles such as P.H.C pile, pipe and cast-in-place pile of big diameter, etc. As above-mentioned, it is considered that the use of P.H.C pile or pipe pile is advisable on the synthetical investigation and that the selection of cast-in-place pile method is desirable in terms of the constructive safety and durability.

  • PDF

Bearing Capacity of SDA Augered Piles in Various Grounds Depending on Water-Cement Ratio of Cement Milk (시멘트밀크 배합비에 따른 다양한 지반 내 SDA매입말뚝의 연직지지력)

  • Hong, Won-Pyo;Lee, Jae-Ho;Chai, Soo-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.37-54
    • /
    • 2008
  • The standard construction manual of the SDA (Separated Doughnut Auger) piling method was proposed so that the resisting capacity of the augered piles could work effectively. 438 dynamic pile load tests were performed on 379 test piles, which were installed at 36 sites in Korea by the SDA piling method with application of various water-cement ratio of cement milks. The dynamic pile load test results showed that the bearing capacity of the SDA augered piles depended on the water-cement ratio of cement milks. And couple of the formulas were presented according to water-cement ratio and various grounds to estimate quantitatively both the unit end bearing and the unit frictional capacity of the SDA augered piles. It was also considered that the water-cement ratio of cement milks exerts an influence on the bearing capacity of the SDA augered piles. The presented formulas were compared with the existing formulas, which were presented by several standard design codes to design the augered piles.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

Comparison of the methods used in determining the pile design load (말뚝의 설계하중 결정방법에 대한 비교)

  • 이명환;윤성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.69-102
    • /
    • 1992
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulae proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. During construction pile driving formulae are used and sometimes the pile loading tests are performed. In this paper the three methods are studied and compared. It is concluded that except the estimation made by pile loading test, the reliability of estimation is very poor. And the analysis of pile loading test would involve serious errors unless the end bearing capacity is measured separatly from the skin friction capacity. It is thus suggested that the separate measurement of end bearing capacity and skin friction capacity is the most reliable way of determining the pile design load.

  • PDF

Study of pile foundation using spiral pile (나선형 파일을 이용한 말뚝기초에 관한 연구)

  • Yoon, Young-Hwan;Kang, Si-On;Cho, Young-Dong;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.567-575
    • /
    • 2018
  • This study examined a pile foundation using a spiral pile. To maintain the structural safely, a foundation for connecting the ground and the ground structure is needed. On the other hand, noise and vibration, etc. cause problems when constructing a foundation on adjacent structures or urban areas. A study of the spiral foundation of a new shape with low vibration and noise was carried out to solve these problems. A study of pile foundations was carried out on a scaled model test and compared with the results of Meyerhof's bearing capacity theory. The scaled model test results showed that the bearing capacity increases with increasing pitch angle and length of the spiral pile. To verify the measured bearing capacity in a test with theoretical results, the bearing capacity of the actual spiral pile and scaled model pile were examined and compared. The ultimate bearing capacity of the spiral pile can be increased by increasing the foundation length and pitch angle. This study complements existing foundation construction problems and contributes to a better effect and safety.

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Comparison of Bearing Capacity Equations for Rock Socketed Drilled Shalt Based on the Results of Static Pile Load Test (정재하시험을 통해 산출되는 현장타설말뚝의 지지력이론식 비교연구)

  • 천병식;황성식;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.333-340
    • /
    • 2003
  • In Korea, drilled shaft are generally socketed into rock. Driven pile has environmental problems such as vibration and noise. Therefore, applications of the drilled shaft are increasing in Korea. In this paper, static load test data of the rock socketed drilled shaft at Gwangandaero and Suyeong 3hogyo are analyzed. The bearing capacities from field test data and theoretical formula are compared and analyzed. From this study, design approaches for drilled shafts in Korea are examined and several suggestions are proposed.

  • PDF

A new proposal for the appropriate quality control of driven piles by using set values (최종관입량을 기준으로 한 합리적인 말뚝 시공관리 방안)

  • 이명환;홍헌성;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.51-63
    • /
    • 2000
  • Because of simplicity and easiness, dynamic pile driving formulae have long been used by most of the field engineers for pile quality control purposes. Yet their reliability have been repeatedly reported unsuitable and the results can lead to significant errors. According to the research results by the authors, the two most important sources of unreliability of dynamic pile driving formulae are uncertainty in the estimation of hammer efficiency and time dependent characteristics of pile bearing capacity. Based on this finding a new method is proposed. By using the actual value of hammer efficiency the pile bearing capacity at the time of driving could be reasonably estimated. By performing restrike test sometime after pile installation, time effect coefficient could be determined. The effectiveness of the proposed method was proven in the actual construction project.

  • PDF