• Title/Summary/Keyword: Pile Foundation

Search Result 644, Processing Time 0.027 seconds

Mass Movement of Tieback Walls (앵커의 위치에 따른 토류벽의 Mass 변형특성)

  • 김낙경;박종식;주준환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.537-544
    • /
    • 2003
  • Mass movement of anchored walls is defined and its characteristics were discussed. A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and used in practice. However, the behavior of an anchored wall can not be predicted well, if the locations of anchor bonded zone are near the wall. Mass movement is defined as the movement of anchor bonded zone due to the excavation without the change in the anchor load. Case histories of anchored walls were analyzed and the normalized mass movement chart were developed. This mass movement chart can provide the idea how to locate anchors to minimize the deflection of the wall. The further the anchor bonded zone is located from the wall, the less the movement of the wall due to excavation occurs.

  • PDF

Bearing capacity of micropiled-raft system

  • Hwang, Tae-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • The micropile has been mainly used under the concept of supplementing structural support or reinforcing soft ground. For the micropiled-raft system which uses a micropile and a raft in combination in particular, it is generally considered as ground reinforcement rather than foundation components considering the bearing capacity of the micropile in many cases. In this study, the bearing capacity mechanism of the micropiled-raft system is investigated through a physical model test and numerical method. The numerical results have shown that not only the slender-pile-effect of the micropile, but also the ground reinforcement effect, increase the bearing capacity considerably. The bearing capacity formula of the micropiled-raft system is derived based on the failure mechanism obtained through model tests. The formula is verified and proposed as a design chart.

Optimum Design of Piled Raft Foundations using Genetic Algorithm (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계)

  • 김홍택;강인규;황정순;전응진;고용일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF

Impact spectrum of flood hazard on seismic vulnerability of bridges

  • Yilmaz, Taner;Banerjee, Swagata
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.515-529
    • /
    • 2018
  • Multiple hazards (multihazard) conditions may cause significant risk to structures that are originally designed for individual hazard scenarios. Such a multihazard condition arises when an earthquake strikes to a bridge pre-exposed to scour at foundations due to flood events. This study estimates the impact spectrum of flood-induced scour on seismic vulnerability of bridges. Characteristic river-crossing highway bridges are formed based on the information obtained from bridge inventories. These bridges are analyzed under earthquake-only and the abovementioned multihazard conditions, and bridge fragility curves are developed at component and system levels. Research outcome shows that bridges having pile shafts as foundation elements are protected from any additional seismic vulnerability due to the presence of scour. However, occurrence of floods can increase seismic fragility of bridges at lower damage states due to the adverse impact of scour on bridge components at superstructure level. These findings facilitate bridge design under the stated multihazard condition.

Analysis of Consolidation Settlement of SCP Improved Ground (SCP 개량지반의 압밀침하 결과 분석)

  • Jung, Sun-Young;Jung, Jong-Bum;Yang, Sang-Yong;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.990-997
    • /
    • 2005
  • In this paper, the measured results obtained from the ground improved by SCP method at quay-wall caisson foundation in Pusan New Port 1-1 phase are analyzed and then compared with the values predicted by a consolidation theory. The measured settlement is generally smaller than the predicted settlement. For consolidation velocity, the measured velocity is later than the predicted value. According to the execution of caisson placing phases, the predicted value shows higher settlement than the measured one with time being.

  • PDF

A Study on Increase of Bearing Capacity of Dense Sandy Ground installed by Vertical Micropiles (연직 마이크로파일이 설치된 조밀한 모레지반의 지지력 증가에 관한 연구)

  • 최상민;임종철;이태형;공영주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.355-362
    • /
    • 2001
  • Since micropiles were conceived in Italy in the early 1950s, which have been widely used for In-situ reinforcement, bearing pile or the concept of combination in the world-wide. The meaning of micropiles usually differs from that of a general deep foundation. Because the load capacity of it was mainly affected by skin friction. Also, it could be obtained the improvement effects of load capacity or ground's rigidity by the unitary behavior of ground and micropiles. In this study, The model tests were peformed on the dense sand where micropiles are set to the vertical direction. Strip footing was used in it. Steel bars of dia. 2 and 4㎜ were used in model tests of which the sand was attached on the surface, and the length of it was changed as 2B to 6B(where, B is width of strip footing) Through this process, the load capacity were analyzed from the test results in the relationship between load and displacement.

  • PDF

A Study on the Technical Method of the Apartment Remodeling Types (공동주택 리모델링 유형별 적용 가능한 공범에 관한 연구)

  • 신교영;이정수;송용호
    • Journal of the Korean housing association
    • /
    • v.14 no.6
    • /
    • pp.135-146
    • /
    • 2003
  • The purpose of this study is to provide the technical methods of apartment remodeling. To gather information, a survey of the technical methods of apartment remodeling in domestic and foreign was conducted. As a case study, three types will be applicable to apartment remodeling: Horizontally expanding remodeling, combining remodeling, conversion remodeling. The results of the study are as follows: 1. Horizontally expanding remodeling type will be applied the dry construction and anchor pile foundation at skeleton and the double flooring at infill. 2. Combining remodeling type will be applied the dry wall construction in order to establish or remove the partition walls. 3. Conversion remodeling type will be applied that converting building equipments and interior finish materials conversion of old to new materials.

A Study on Lateral Bearing Capacity of PHC Piles Driven Vertically in Decomposed Granite and Clayey Soil (화강토와 점토지반에 연직으로 타입된 PHC말뚝의 수평지지력에 관한 연구(지반공학))

  • 문영민;이문수;이대재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.466-470
    • /
    • 2000
  • Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. This study deals with the lateral resistance of PHC pile instead of vertical capacity for earthquake resistant design as well as wind. As case study, the prediction values were compared with measured ones based on ASTM. During this research, Matlock & Reese, Davisson & Gill, Broms and Chang's methods were selected in calculating prediction of lateral resistance of PHC piles. In decomposed granite and clayey soils, The result showed that prediction values proposed by Matlock & Reese(Davisson & Gill), Chang and Broms were smaller values than real values. four proposed methods by Matlock & Reese(Davisson & Gill) and Chang based on lateral deflection and Broms by ultimate lateral resistance turned out valid in view of engineering practice.

  • PDF

A Case Study of Ground Improvement on Railroad Station Foundation by the Application of CGS Method. (역사기초 보강 공법으로써 CGS 공법 적용사례 연구)

  • Yeoh Yoo-Hyeon;Chun Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1065-1070
    • /
    • 2004
  • Recenlty, there are many cases that structures are constructed on soft ground in domestic. Generally in those cases, appropriate geotechnical techniques for the ground are needed. In this study, an example for ground improvement of OO railroad station construction site is introduced and analyzed. The ground conditions of this site which is soft ground are that N value is under 6, average depth and ground water table is 24.4m, GL-1.7. So, as a countermeasure technique for bearing reinforcement, Compaction Grouting System (CGS) method was applied on construction site. To estimate the application of CGS method, piezo cone penetration test and static pile loading test were carried out during the construction. Results of analysis show that CGS method for improving the bearing capacity of soft ground is applicable for the ground well.

  • PDF

Design criteria of rock socked pile in South Korea (국내 암반에 근입된 현장타설말뚝의 설계기준 수립)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.31-42
    • /
    • 2002
  • The Design criteria are different from one another due to the different engineering properties of rock in the every nation. Most of the test results of the rock-socketed piers were loaded two times of the design load capacities because they would be used in the foundation of the bridge or the building. So we have much difficulties in study of the load capacities of the rock-socketed piers by the test result in Korea. When we design the rock-socket piers, every designer uses the different formula, and makes different results. Recently the demand of the large bridges and the huge buildings has been increased. The adequate design criterion of the rock-socketed pier is urgently needed to design them reasonable. In this paper we analyzed the various design criteria and proposed the adequate design criterion which is based on the test results of the rock-socked piers in Korea.

  • PDF