• 제목/요약/키워드: Pig slurry

검색결과 156건 처리시간 0.023초

The Effects of Zeolite on Ammonia, Nitrous Oxide Emission, and Forage Yield from Pig Slurry Applied to the Forage Corn Cropping

  • Choi, Ah-Reum;Park, Sang-Hyun;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제40권4호
    • /
    • pp.274-278
    • /
    • 2020
  • Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.

열펌프를 이용한 슬러리 돈분뇨 증발건조처리시스템 개발 (Development of Heat Pump Use Slurry Pig Manure Evaporation Drying System)

  • 김현태;최홍림
    • Journal of Biosystems Engineering
    • /
    • 제30권1호
    • /
    • pp.32-37
    • /
    • 2005
  • This study was conducted the slurry pig manure treatment by condensation drying of liquid from the slurry manure with a heat-pump and electric heater combined with air flow channel system. The system was designed as liquid and solid matters separation of slurry manure, and it can doing continuous input of slurry manure from a pig house, and it can operated year round use for pig farms. The separation of liquid and solid matters from slurry manure needed the prevention of solid accumulation in the system. The system was designed as closed space from outside air space for maximized evaporation of liquid and the condensation of liquid from slurry manure. The system can be operated the pig slurry manure treatment regardless of seasons in a yew. The separated evaporation water from the pig slurry manure by the heat-pump was satisfactorily pure water that can be used as washing water in livestock farms. The system can applicate to about 100 heads of pig, and the proper area of evaporation plate system was considered around $10\;m^2$. The input electrical energy of about 15 kWh which the cost equal to 250,000 won per month.

Acidification and Biochar Effect on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • 한국초지조사료학회지
    • /
    • 제42권1호
    • /
    • pp.47-53
    • /
    • 2022
  • The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.

액상 돈분에서 병원균과 가스 발생량을 감소시키기 위한 분 첨가제로서 생균제의 축산환경경영평가 (Evaluation of Probiotics on Animal Husbandry and Environmental Management as Manure Additives to Reduce Pathogen and Gas Emissions in Pig Slurry)

  • 최인학;이혁준;김동현;이용복;김삼철
    • 한국환경과학회지
    • /
    • 제24권1호
    • /
    • pp.25-30
    • /
    • 2015
  • This study aimed to evaluate the effects of probiotics as manure additives on pathogen, mineral, carbon dioxide and methane emissions in pig slurry as a function of time and provide information about the importance of pig slurry management to pig producers. An experiment was a completely randomized design and four treatments: CON: no treatment (5 kg pig slurry), T1: 5 kg pig slurry + 0.2% bacillus subtilis, T2: 5 kg pig slurry + 0.2% yeast, T3: 5 kg pig slurry + 0.2% actinomycetales. All treatments were replicated three times. The results information that is analyzed includes the following: First, in spite of the lack of statistically significant differences, pH values and carbon dioxide were lowered (P < 0.05) in all probiotic treatments compared with the controls as a function of time. Second, all probiotic treatments had no effect on Salmonella enterica, mineral, and methane emission. The results of this study indicated that addition of 0.2% probiotic to pig slurry resulted in lower pH and carbon dioxide emissions, and carbon dioxide and methane emitted from pig slurry is not listed as noxious gases.

생균제와 제올라이트를 혼합한 축분첨가제가 돈분 슬러리에서 발생하는 유해 가스 발생량에 미치는 영향 (Effect of Manure Additives Mixed with Probiotics and Zeolite on Harmful Gas Production Released From Pig Slurry)

  • 장우환;최인학
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.99-102
    • /
    • 2022
  • The aim of this study was to investigate the effect of manure additives mixed with probiotics and zeolite on harmful gas production generated by pig slurry. A total of 180 crossbred pigs ([Yorkshire × Land race] × Duroc, live weight 70±3.21 kg) were allotted to a completely randomized design with 3 treatments and 3 replications (20 heads per replicate). The treatments consisted of 0% (control), 0.05% (T1), or 1% (T2) of manure additives mixed with probiotics and zeolite. Manure additives were added weekly to pig slurry pits (2 m × 4.5 m × 1.2 m) on a volumetric basis. For ammonia measured at both 10 cm and 90 cm above the pig slurry pit, a statistical significance (p<0.05) was found in probiotics and zeolite-treated manure additives at weeks 1 - 3, except for week 0. In addition, hydrogen sulfide levels measured at 10 cm above the pig slurry pit were not affected by the manure additive at weeks 0 and 1, but showed a significant statistical difference at weeks 2 and 3 (p<0.05). Therefore, supplementing pig slurry with 0.05% and 0.1% manure additives mixed with probiotics and zeolite was found to be effective in reducing environmental pollution in pig facilities.

Effect of Injection Application of Pig Slurry on Ammonia and Nitrous Oxide Emission from Timothy (Phleum pretense L.) Sward

  • Park, Sang-Hyun;Lee, Bok-Rye;Jeong, Kwang-Hwa;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제38권3호
    • /
    • pp.145-149
    • /
    • 2018
  • The objective of this study was to determine the effect of injection application of pig slurry on ammonia ($NH_3$) and nitrous oxide ($N_2O$) emission from timothy (Phleum pretense L.) sward. The three treatments were applied: 1) only water as a control, 2) pig slurry application by broadcasting, 3) pig slurry application by injection. The pig slurry was applied at a rate of $200kg\;N\;ha^{-1}$. Total $NH_3$ and $N_2O$ emission, expressed as a cumulative amount throughout the measurement time (40 days), was $2.68kg\;NH_3-N\;ha^{-1}$ and $6.58g\;N_2O-N\;ha^{-1}$, respectively, in the control. The injection application of pig slurry decreased total $NH_3$ and $N_2O$ emission by 39.8% and 33.3%, respectively, compared to broadcasting application of pig slurry. The present study clearly showed that injection application exhibited positive roles in reducing N losses through $NH_3$ and $N_2O$ emission.

퇴비단 여과액비와 막분리 농축액비를 이용한 고형배지경 양액재배가 고추의 생육과 수량에 미치는 영향 (Effects of Compost Leachate and Concentrated Slurry on the Growth and Yield of Pepper in a Substrate Hydroponic Culture)

  • 류종원
    • 한국축산시설환경학회지
    • /
    • 제15권2호
    • /
    • pp.161-170
    • /
    • 2009
  • 본 연구는 고형배지경 양액재배에서 화학 양액 대체가능성을 검토하기 위하여 여과액비, 농축액비에 양액 및 부산물의 혼합처리가 고추의 생육과 수량에 미치는 영향을 검토하였다. 처리는 질소함량을 기준으로 여과액비, 농축액비에 부산물과 양액을 혼합하는 처리구를 두어 전기 전도도와 pH를 조정하여 고추 양액재배를 실시한 결과를 요약하면 다음과 같다. 1. 여과, 농축액비에는 다량 및 미량원소를 함유하고 있으며 부유물질(SS)이 낮아 수경재배시 관배수의 막힘문제 없이 활용이 가능하였다. 또한 여과, 농축액비는 인산, 칼슘, 마그네슘 함량이 낮고 칼륨이 높은 양분불균형를 나타내었다. 2. 양액재배에서 고추의 합계수량은 여과액비 단독시 용구에서 원예연 표준양액재배 대비 총수량 59%를 나타내었으며 농축액비의 경우 양액 대비 14%에 불과하였다. 퇴비단여과액비+부산물, 농축액비+부산물 처리구의 수량은 대조구 대비 각각 60, 54%를 나타내어 여과액비 단독시 용구와 비슷한 수량을 나타내어 부산물 첨가 효과가 나타나지 않았다. 3. 여과액비와 농축액비에 양액을 50%: 50% 비율로 혼합 처리구의 수량은 표준양액과 대등한 수량을 나타내었다. 결론적으로 여과액비, 농축액비 50%에 양액을 50% 첨가하면 고추 양액 재배에 활용이 가능 할 것으로 판단된다.

  • PDF

제주 화산회토양에서 돈분액비 시용이 수수 X 수단그라스의 생산성 및 NO3-N의 용탈에 미치는 영향 (Effect of Pig Slurry Application on the Forage Yield of Sorghum X Sudangrass Hybrid and Leaching of NO3-N in Volcanic Ash Soil)

  • 박남건;고서봉;이종언;황경준;김문철;송상택
    • 한국초지조사료학회지
    • /
    • 제23권3호
    • /
    • pp.151-158
    • /
    • 2003
  • 제주지역 화산회토양에서 주로 재배하고 있는 사료작물인 수수${\times}$수단그라스 교잡종 재배시 돈분액비 중 질소성분을 기준으로 하여 수준별 돈분액비를 기비로 사용하였을 때 수수${\times}$수단그라스 교잡종의 생산성과 환경에 미치는 영향을 구명하기 위하여 대조구로 화학비료 ($N-P_2$$O_{5}$ $-K_2$O=200-l50-150kg/ha), 단용구, 돈분액비 200kg N/ha, 돈분액비 300kg N/ha, 돈분액비 400kg N/ha 단용구, 돈분액비 100kg N/ha+화학비료 100kg N/ha, 돈분액비 150kg N/ha+화학비료 100kg N/ha, 돈분액비 200kg N/ha+화학비료 100kg N/ha 혼용구 등 7처리를 두어 난괴법 3반복으로 하여 4년 동안 수행되었다. 수수${\times}$수단그라스 교잡종의 4년간 평균 건물수량은 돈분액비 400 및 300kg N/ha 단용구가 각각 17,817와 17,279kg/ha으로 화학비료구나 다른 처리구에 비해 높은 수량을 보였다(P<0.05). 토양 용액중 질산태 질소 함량은 시용초기(시용후 20일)인 6월 조사시 전 처리구에서 음용수 기준인 $10.0mg/\ell$보다 높았으며, 장마가 지난 후 8월 조사시에는 전 처리구에서 $5.0mg/\ell$이하로 나타났다.

돈분뇨 슬러리 액비저장조내 침전물 특성 연구 (A Study on Characteristics of Sediment from Pig Manure Slurry in Liquid Fertiluzer Storage Tank)

  • 이승훈;정광화;김중곤;;곽정훈;한덕우
    • 한국축산시설환경학회지
    • /
    • 제20권4호
    • /
    • pp.195-200
    • /
    • 2014
  • Liquid fertilization of pig manure slurry is very useful treatment method to recycle organic waste matter as a valuable fertilizer. The solids precipitate and accumulated at the bottom of liquid fertilization tank. The content of nitrogen and phosphate are higher in sediment than pig manure slurry. The pH of sediment was 7.53. S-COD/T-COD ratio of pig manure slurry and sediment were 0.477, 0.29, respectively. The moisture content of sediment of pig manure slurry and sediment were 80.45~83.82%, 97%, respectively. The content of organic matter of sediment was 8.79~10.56%. The content of nitrogen and phosphate of sediment and pig manure slurry were 9,000~11,100 mg/L, 9,100~11,100 mg/L, respectively. The particle size of pig manure slurry was distributed from 2 mm to 0.125 mm. On the other hand. the particle size of sediment was under 0.125 mm.

Effects of Charcoal Application on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea Mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Kim, Tae Hwan
    • 한국초지조사료학회지
    • /
    • 제41권4호
    • /
    • pp.280-286
    • /
    • 2021
  • The objective of this study was to prove the effect of pig slurry application with charcoal on nitrogen use efficiency (NUE), feed value and ammonia (NH3) emission from maize forage. The four treatments were applied: 1) non-pig slurry (only water as a control), 2) only pig slurry application (PS), 3) pig slurry application with large particle charcoal (LC), 4) pig slurry application with small particle charcoal (SC). The pig slurry was applied at a rate of 150 kg N ha-1, and the charcoal was applied at a rate of 300 kg ha-1 regardless of the size. To determine the feed value of maize, crude protein, dry matter intake, digestible dry matter, total digestible nutrient, and relative feed value were investigated. All feed value was increased by charcoal treatment compared to water and PS treatment. Also, the NUE for plant N was significantly higher in charcoal treatments (LC and SC) compared to PS treatment. On the other hand, there is no significant difference for feed value and NUE between LC and SC. The NH3 emission was significantly reduced 15.2% and 27.9% by LC and SC, respectively, compared to PS. Especially, SC significantly decreased NH3 emission by 15% compared to LC. The present study clearly showed that charcoal application exhibited positive potential in nitrogen use efficiency, feed value and reducing N losses through NH3 emission.