• Title/Summary/Keyword: Pig manure compost

Search Result 123, Processing Time 0.034 seconds

Effects of Supplemental Levels of Fermented Compost on the Early Stage Composting Process of Pig Manure (발효퇴비 첨가수준이 돈분퇴비화 초기과정에 미치는 영향)

  • Jeong, K.H.;Heo, M.Y.;Kim, J.H.;Kwag, J.H.;Jeong, M.S.;Kang, H.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.271-280
    • /
    • 2009
  • The best way to treat livestock manure is to recycle as much as possible. The composting of livestock manure is a safe and economical treatment process. This study was carried out to investigate decomposition effect of pig manure by adding fermented compost. The fermented compost was added in pig manure mixed with sawdust as an inoculator, and the mixture was fed to composting reactor. Supplemental levels of fermented compost on the pig manure mixed with sawdust were regulated at 5, 10, 15 and 20% (V/V) respectively. The results were as follows ; 1. In all cases, PH range was between 7.6~9.05 during composting period. 2. The highest temperature and the long duration of thermophilic stage were observed in control treatment. 3. The number of microorganism reached at maximum on day 4, which recorded the highest temperature 4. Compost pile mixed with 10% of inoculator (fermented compost) showed the highest C/N ratio reduction.

  • PDF

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

Effects of Composted Pig Manure on Rice Cultivation in Paddy Soils of Different Texture (논토양검정에 의한 토성별 돈분퇴비 적정 시용량 결정)

  • Song, Yo-Sung;Kwak, Han-Kang;Hyun, Byung-Keun;Yeon, Byeong-Yeol;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.265-272
    • /
    • 2001
  • A manure compost has been identified as an alternative to fertilizer to increase soil fertility and crop production in farming fields. The aim of the present study was to evaluate the effects of pig manure compost on soil properties and rice productivity as well as to determine the optimum application rate. In 1997, a field experiment was carried out to evaluate the growth of rice on sandy loam, loam, and clay loam soils amended with 0, 5, 10, and $20Mg\;ha^{-1}$ of pig manure compost plus NPK, which decided by soil testing. Rice yields were higher in soils receiving manure compost amendment. The maxim um yields were evaluated with $7,520kg\;ha^{-1}$ in the levels of $4.2Mg\;ha^{-1}$ of pig manure compost application plus NPK in sandy loam, $7,320kg\;ha^{-1}$ in the levels of $10.7Mg\;ha^{-1}$ in loam, and $6,320kg\;ha^{-1}$ in $17.2Mg\;ha^{-1}$ in clay loam soil. The optimum application rate of pig manure compost, which decided for 95% of maximum yields, was $4.0Mg\;ha^{-1}$ in sandy loam and $7.0Mg\;ha^{-1}$ in loam and clay loam soils under the condition of chemical fertilization by soil diagnosis. An increase in rice yield indicated a better nutrient status in compost-amended soil which was supported by the higher nutrient contents of N, P and K in shoot of plants grown in soil with manure compost amendment. Addition of manure compost increased available phosphate, silicate and exchangeable K in the amended soils according to the rate of compost application rate. It can be concluded that the manure compost could be a suitable organic fertilizer for improving rice productivity and soil fertility, and an application rate of $4.0Mg\;ha^{-1}$ in sandy loam and $7.0Mg\;ha^{-1}$ in loam and clay loam soils would give the optimum rice yields in the standard fertilization by chemical fertilization.

  • PDF

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

Effect of Liquid Pig Manure and Synthetic Fertilizer on Rice Growth, Yield, and Quality (벼 생육, 수량과 품질에 대한 돈분액비와 화학비료 시용 효과)

  • Kwon, Young-Rip;Kim, Ju;Ahn, Byung-Koo;Lee, Sang-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • We have researched the changes in nutrient content in each phase of fermentation in crops treated with liquefied pig fertilizer, and have determined the best method for applying livestock excrement to cultured crops. In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-Do Agriculture Research and Extension Services(Jeon-buk series) from 2007 to 2008. The rice plant nitrogen absorption quantity change, according to the growth stages of the cultivated rice, was 20.3% in the rice treated with the liquid pig manure and 22.2% the chemical fertilizer at highest congelation. The chemical fertilizer showed a higher absorption quantity than the liquid manure compost. The nitrogen density at highest congelation was 1.5% in the chemical fertilizer, and 1.8% in the pig manure liquid compost not a significant difference. The stem height at harvest time was 73.8 cm in the crops treated with the liquid pig manure compost. Those treated with the chemical fertilizer, yielded a height of 4.2 cm less than the crops treated with the liquid pig manure compost. The yield was 507 kg/10a in the liquid pig manure compost treated rice, compared with the chemical fertilizer, which showed a value of 1.2% lower. The protein content was 6.3% in the rice treated with the chemical fertilizer, but 6.4% in the rice treated with the liquid pig manure compost. This is not a significant difference. However, the lodging rice plant treated with the chemical fertilizer control showed a protein content of 6.8%, which was even higher than the normal rice. The head rice ratio in the brown rice and the polished rice ended up to be lower in the crop treated with the liquid pig manure than that treated with the chemical fertilizer, Quality, the palatability value, was similar in both groups. The above result indicate that, the effect of liquid pig manure compost corresponds to the effect of chemical fertilizer, when each are scattered uniformly.

Development of the Optimal Composting Condition for the High Quality of Pig manure compost (고품질의 돈분 퇴비를 위한 합리적인 퇴비화 조건 개발)

  • Chang, Ki-Woon;Yu, Young-Seok;Min, Kyoung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.112-117
    • /
    • 2002
  • This study was conducted to induce the optimal composting conditions of pig manure mixed with sawdust and dried paper-mill sludge in the composting for production of high quality compost. Pig manure contains high water content and How C/N ratio because of comparatively high nitrogen content than sawdust and dried paper-mill sludge. Therefore the addition of dried paper-mill sludge and sawdust to the raw materials helps controlling the C/N and the water content of compost pile. The composting system used in the experiment was agitated static bed system. The physical properties of the mixed raw materials was not good at the working conditions in the early stage of composting. The temperature of compost heap reaches at $60^{\circ}C$within 5 day after starting composting in P-2 treatment mixed with pig manure and sawdust(56.6 : 43.4). Then the water content of P-2 was 58%. The pH in all treatments were slowly decreased as the composting was proceeded. Although the changes of T-C and T-N were not extended because of the short composting experiment period. Reduction rates of T-C in treatments were 5-12% without special difference. By considering the efficiency of composting in each of five treatments with pig manure the optimal water contents was about 57% level. Mixing a sawdust as a bulking agent was more positive than dried paper-mill sludge from a viewpoint of compost quality.

  • PDF

The Influence on Compost effect of Livestock manure inoculated peat (니탄(peat)이 가축분의 퇴비효과에 미치는 영향)

  • Nam, Yi;Jung, Soo-Hee;Lee, Sung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • Sawdust, peat, and sawdust+peat were used as bulking agent in the compost production process using three different origin of manure; cow, pig, and chicken. The organic content and individual N, P, K content of the final manure compost were higher when peat or peat+sawdust were used to control the moisture. The carbon to nitrogen ratio and moisture content were low when peat or peat+sawdust were employed. In the case of cow and pig manure compost produced with peat or peat+sawdust, beneficial microorganism content was also higher than that of the manure samples produced with sawdust only. These results indicate that peat can be a useful component in the production of high quality manure compost.

  • PDF

Effects of Pig Manure Composting on Dinitrogen Oxide Emission (돈분 퇴비화가 아산화질소 발생에 미치는 영향)

  • Jeon, B.S.;Kim, T.l.;Yoo, Y.H.;Park, C.H.;Kwag, J.H.;Choi, D.Y.;Kim, H.H.;Lee, H.J.;Sin, Y.K.;Kim, G.Y.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.115-118
    • /
    • 2002
  • This study was conducted to determine the effects of pig manure composting on emission of dinitrogen oxide ($N_2O$) that is greenhouse gas. Fresh pig manure was mixed with sawdust as bulking agent and moisture content of mixed compost was adjusted by 61.9%. After mixing bulking agent with pig manure that was left to compost with aeration in composting chamber for an initial period of 30 days. At the end of this period, that was decomposed and a second period of composting was conducted without aeration for 60 days. Temperature during the initial composting period was above $55^{\circ}C$ for 7 days. Moisture reduction rate by composting pig manure was 36.7%. $N_2O$ Produced during composting was 0.043g/T-Ng.

  • PDF

Evaluation of Ammonia Emission from Arable Soil applied Liquid Manure and Compost (가축분 퇴.액비 시용에 따른 암모니아 휘산량 평가)

  • Lee, Yong-Bok;Yun, Hong-Bae;Lee, Youn;Kaown, Dug-In
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.329-338
    • /
    • 2009
  • Emission of ammonia to the atmosphere are considered a threat to the environment. The application of livestock manure and compost contributes significantly to the emission of ammonia from agriculture. The reduction in NH3 losses from field-applied manure and compost would be a good strategy to reduce national $NH_3$ emission. In this study, various application techniques of liquid manure and compost were compared to evaluate their potential for reducing $NH_3$ emission. In compost application, the reductions in $NH_3$ emission were 70 and 15% for immediately rotary after application (IRA) and rotary at 3-day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied in compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. Mean reductions in NH3 emission from application of liquid pig manure were 26 and 50% for rotary harrow after surface broadcast application in spring and fall, respectively, in comparison with surface broadcast application. Ammonia emission rate was decreased with increasing water content in soil due to dilution effect, but this reduction only was temporary up to 12 hours after application and cumulative $NH_3$ emission was increased with increasing water content in soil. However, the delay would be beneficial because it allows time for rotary hallow of the applied liquid pig manure. Therefor, ammonia emission can be reduced by immediately incorporation of liquid manure and compost after surface application.

  • PDF