• Title/Summary/Keyword: Pig Production

Search Result 1,105, Processing Time 0.024 seconds

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.

Factors Influencing the Efficiency of In Vitro Embryo Production in the Pig

  • Lin, Tao;Lee, Jae Eun;Shin, Hyun Young;Oqani, Reza K.;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.39 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • Pigs are considered an ideal source of human disease model due to their physiological similarities to humans. However, the low efficiency of in vitro embryo production (IVP) is still a major barrier in the production of pig offspring with gene manipulation. Despite ongoing advances in the associated technologies, the developmental capacity of IVP pig embryos is still lower than that of their in vivo counterparts, as well as IVP embryos of other species (e.g., cattle and mice). The efficiency of IVP can be influenced by many factors that affect various critical steps in the process. The previous relevant reviews have focused on the in vitro maturation system, in vitro culture conditions, in vitro fertilization medium, issues with polyspermy, the utilized technologies, etc. In this review, we concentrate on factors that have not been fully detailed in prior reviews, such as the oocyte morphology, oocyte recovery methods, denuding procedures, first polar body morphology and embryo quality.

Better Housing for Effective Pig Production - Review -

  • Choi, H.L.;Song, J.I.;An, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1310-1315
    • /
    • 1999
  • Air quality in confinement pig houses is important to production and health. Mechanical ventilation and confinement is known to be the most practical tool for maintaining adequate air quality in pig houses through extensive researches since Millier (1950) invented the 'slotted inlet' ventilation system. A variety of mechanical ventilation systems have been applied to confined nursery pig houses in Korea without scientific verification of their ventilation effectiveness. Ventilation systems with three feasible combinations (NA, NB, and NC) of inlets and outlets in a confined nursery pig house were tested to evaluate their ventilation efficiency, of which the one with the performance was supposed to be taken as a standard ventilation system for nursery pig houses in Korea. Field data of air velocity and temperature fields, and ammonia concentration with three ventilation systems were taken and compared to determine the best system. The air velocity and temperature fields predicted by the PHOENICS computer program were also validated against the available experimental data to investigate the feasibility of computer simulation of air and temperature distribution with an acceptable accuracy in a confined house. NC system with duct-induced in-coming air, performed best among the three different ventilation systems, which created higher velocity field and evener distribution ($2.5m/s{\pm}0.3m/s$) over the space with a Reynolds number of $10^4$. The experimental data obtained also fitted well with the simulated values using the modified PHOENICS, which suggested a viable tool for the prediction of air and temperature field with given calculation geometries.

Surface Reflectance Related with Color Characteristics for Pig × Wild Boar Meat

  • Irie, M.;Nishimori, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1321-1325
    • /
    • 2001
  • Color characteristics of pig ${\times}$ wild boar meat were determined with a fiber-optic spectrophotometer. The spectrophotometric characteristic of reduced-myoglobin observed after cutting immediately changed to the spectrophotometric characteristic of oxymyoglobin after 15 minutes of cutting. The spectrophotometry at 400 to 700 nm after 30, 45, 60, 90 and 120 minutes of cutting changed slightly. Compared with M. longissimus thoracis, M. rhomboideus had higher reflectance around 400 nm and from 650 to 1,100 nm and M. spinalis was lower in the visible light region after 60 minutes of cutting. The pig ${\times}$ wild boar meat was similar in reflectance shape with pork but was lower in intensity. The differences depended on the anatomical location. The M. rhomboideus from pig ${\times}$ wild boar had greatly lower reflectance than that from pig, the M. longissimus thoracis reflectance was lower, but M. spinalis reflectance hardly differed. These results showed that pig ${\times}$ wild boar meat had no special characteristic of blooming but had distinguishing characteristic of meat color among anatomical locations.

The oncogenic effects of p53-inducible gene 3 (PIG3) in colon cancer cells

  • Park, Seon-Joo;Kim, Hong Beum;Kim, Jeeho;Park, Sanggon;Kim, Seok Won;Lee, Jung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.267-273
    • /
    • 2017
  • The p53-inducible gene 3 (PIG3), initially identified as a gene downstream of p53, plays an important role in the apoptotic process triggered by p53-mediated reactive oxygen species (ROS) production. Recently, several studies have suggested that PIG3 may play a role in various types of cancer. However, the functional significance of PIG3 in cancer remains unclear. Here, we found that PIG3 was highly expressed in human colon cancer cell lines compared to normal colon-derived fibroblasts. Therefore, we attempted to elucidate the functional role of PIG3 in colon cancer. PIG3 overexpression increases the colony formation, migration and invasion ability of HCT116 colon cancer cells. Conversely, these tumorigenic abilities were significantly decreased in in vitro studies with PIG3 knockdown HCT116 cells. PIG3 knockdown also attenuated the growth of mouse xenograft tumors. These results demonstrate that PIG3 is associated with the tumorigenic potential of cancer cells, both in vitro and in vivo, and could play a key oncogenic role in colon cancer.

Effect of Pig Feces and Pig Waste Mixture Compositions on Bio-oil Production by Pyrolysis Process (돈분과 돈슬러리의 성분이 열분해공정에 의한 바이오오일 생산효율에 미치는 영향)

  • Zhu, Kun;Choi, Hong Lim;Shin, Jongdu;Paek, E
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.29-35
    • /
    • 2009
  • Pyrolysis is recently used as one of alternative methods of animal waste treatment. In this study bio-oil was produced at $550^{\circ}C$ in an auger reactor through pyrolysis process. Two pig waste mixtures were used, pig feces mixed with rice husks and pig feces mixed with sawdust. The main compositions of hemicellulose, lignin, cellulose, protein, and fat were analyzed chemically. Based on the main composition results obtained, the contents of holocellulose (the sum of hemicellulose and cellulose) and lignin had a significant positive effect on bio-oil production, and there was a significant negative effect of ash content on bio-oil yield. The interactions between the different feedstocks were evaluated, and it was concluded that the interaction between pig feces and rice husks was minimal, whereas the interaction between pig feces and sawdust was significant.

  • PDF

Rice as an alternative feed ingredient in swine diets

  • Kim, Sheena;Cho, Jin Ho;Kim, Hyeun Bum;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.465-474
    • /
    • 2021
  • It has become important to explore alternative feed ingredients to reduce feed costs, which are burdensome for livestock production. In addition, it is desirable to find efficient and functional alternative ingredients for traditional feed ingredients in pig diets, considering the stress and sensitivity of disease of pig. Rice is produced around the world like corn that is the typical energy source in pig diets. Although the nutritional quality varies depending on the degree of milling, rice, except whole grains (paddy rice), contains more starch than corn and its structure and granule size are easier to digest than corn. In addition, the fact that rice has fewer non-starch polysaccharides (NSP) and anti-nutritional factors (ANFs) is also effective in improving digestibility and various polyphenols in rice can help modulation of immune responses, which can be beneficial to the gastrointestinal environment and health of pig. Many studies have been conducted on rice focusing on things such as degree of milling, substitution rates of corn, granule size, and processing methods. Most results have shown that rice can be partially or completely used to replace corn in pig diets without negatively affecting pig growth and production. While further research should focus on the precise biological mechanisms at play, it was confirmed that the use of rice could reduce the use of antibiotics and pig removal and protect pigs from gastrointestinal diseases including diarrhea. From this point of view, rice can be evaluated as a valuable feed ingredient for swine diets.

Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus

  • Kim, Ji-Woo;Kim, Hye-Min;Lee, Sang-Mi;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1473-1480
    • /
    • 2012
  • The Galactose-${\alpha}1$,3-galactose (${\alpha}1$,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of ${\alpha}1$,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

In Vitro Production of Pig Embryos using Intracytoplasmic Injection of Flow Cytometry Sorted Boar Spermatozoa

  • Kim, Dae-Young;Hyun, Sang-Hwan;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.275-281
    • /
    • 2008
  • The ability to preselect the sex of piglets is advantageous in the pig industry. The objective of this study was to examine the feasibility of using intracytoplasmic sperm injection (ICSI) with sorted spermatozoa to produce piglets with a preselected sex. Pig embryos were produced by ICSI of frozen X- and Y-sperm that had been separated by flow cytometry. The developmental competence of the embryos was investigated in vitro and in vivo. The populations of X- and Y-spermatozoa were 52.7% and 47.3%, respectively in our samples. The in vitro development of ICSI embryos was enhanced by longer of in vitro maturation of oocytes ($44{\sim}48\;h$ vs. $40{\sim}43\;h$). Their cleavage ($65{\sim}70%$) and blastocyst formation ($9{\sim}12%$) rates were not significantly different between male and female ICSI embryos, or between sorted and unsorted sperm-derived embryos. One pregnancy was established in a recipient that was transferred with 110 female ICSI embryos, but the pregnancy was terminated on Day 89 of gestation. Our results suggest that the separation X- and Y-spermatozoa by flow cytometric sorting can be a useful tool in combination with ICSI for the production of pig embryos and piglets of preselected sex.

Selenium in Pig Nutrition and Reproduction: Boars and Semen Quality - A Review

  • Surai, Peter F.;Fisinin, Vladimir I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.730-746
    • /
    • 2015
  • Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.