• Title/Summary/Keyword: Piezothermoelasticity

Search Result 2, Processing Time 0.015 seconds

Transient Piezothermoelasticity of a Piezo Ceramic Plate Subjected to Antisymmetric Thermal Load and Symmetric Thermal Load (압전 Ceramics 평판의 비대칭열부하와 대칭열부하에 의한 과도 압전열탄성 해석에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok;Yang, Seung-Pil;Kim, Yong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.133-143
    • /
    • 1997
  • Piezoelastic materials have recently attracted considerable attention because of their potential use in intelligent structural systems. In this paper, we treat a transient piezothermoelastic problem in a hexagonal plate of crystal class 6mm subjected to antisymmetric heating temperature. We analyze this problem by use of the potential function method. Numerical calculations are carried out for a cadmium selenide solid, and the results are presented graphically in comparison with those derived from the similar problem in a cadmium selenide plate subjected to symmetric heating temperature for a symmetry transient problem.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.