• Title/Summary/Keyword: Piezoresistor

Search Result 23, Processing Time 0.027 seconds

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구)

  • 심재준;한근조;한동섭;이성욱;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (지지조건이 압저항 가속도 센서의 민감도에 미치는 영향 평가)

  • Shim J.J.;Han G.J.;Han D.S.;Lee S.W.;Kim T.H.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1381-1384
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness. And according to the increment of seismic mass size, the value of resistance change ratio is decreased by increase of the structure stiffness. Y directional piezoresistor is formed in the position of $100\mu{m}\;apart\;from\;cantilever\;edge\;and\;length\;of\;that\;is\;800\mu{m}$.

  • PDF

The effect of the boss and mass on the sensitivity of the piezoresistive sensor (압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향)

  • Shim, Jae-Joon;Lee, Sung-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.405-410
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness.

  • PDF

Fabrication of silicon piezoresistive pressure sensor for a biomedical in-vivo measurements (생체 in-vivo 측정용 실리콘 압저항형 압력센서의 제조와 그 특성)

  • Bae, Hae-Jin;Son, Seung-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.148-155
    • /
    • 2001
  • A pressure sensor on the tip of a catheter which is utilized to measure the in-vivo pressure in a human body was fabricated and the characteristic of the pressure sensor as measured. To fit into a catheter with 1 mm caliber, samples of $150\;{\mu}m$(thickness) ${\times}$ (600, 700, 800, 900, 1000) ${\mu}m$(width) ${\times}2\;mm$(length) was fabricated. The thicker face with $450\;{\mu}m$ thickness of SDB wafer was made thin to $134\;{\mu}m$ thickness using KOH etchant and it made possible to fabricate sensor cell with the width shorter than 1 mm. Different to the whitstone bridge sensor, we formed one piezoresistor and one reference resistor in sensor. Therefore there are possibilities of reduction of the sensitivity, then by using the simulation tool ANSYS 5.5.1, the location and the type of the piezoresistor was optimized. Another piezoresistor type of sensor which contain one longitudinal and one transverse piezoresistor was fabricated at the same time, but the sensitivity was not improved very much. To get the output versus the pressure, a constant current source and a implementation amplifier was used. As a result, the maximum sensitivity of the sensor with one piezoresistor was $1.6\;{\mu}V/V/mmHg$.

  • PDF

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

Development of the high temperature silicon pressure sensor (고온용 실리콘 압력센서 개발)

  • Kim, Mi-Mok;Chul, Nam-Tae;Lee, Young-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.147-150
    • /
    • 2003
  • In this paper, We fabricated a high temperature pressure sensor using SBD(silicon- direct-bonding) wafer of $Si/SiO_2$/Si-sub structure. This sensor was very sensitive because the piezoresistor is fabricated by single crystal silicon of the first layer of SDB wafer. Also, it was possible to operate the sensor at high temperature over $120^{\circ}C$ which is the temperature limitation of general silicon sensor because the piezoresistor was dielectric isolation from silicon substrate using silicon dioxide of the second layer. The sensitivity of this sensor is very high as the measured result of D2200 shows $183.6\;{\mu}V/V{\cdot}kPa$. Also, the output characteristic of linearity was very good. This sensor was available at high temperature as $300^{\circ}C$.

  • PDF