• Title/Summary/Keyword: Piezoelectric thick films

Search Result 38, Processing Time 0.024 seconds

Charicteristics of PAN-PZT Thick Films on Si-Substrate by Screen Printing (스크린 프린팅법으로 제조된 PAN-PZT 후막의 특성)

  • 김상종;최지원;김현재;성만영;윤석진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.139-142
    • /
    • 2002
  • Characteristics of piezoelectric thick films prepared by screen printing were investigated. The piezoelectric thick films were fabricated using Pb(Al,Nb)O$_3$-Pb(Zr,Ti)O$_3$ system on Si-substrate. The fabricated thick films were burned out at 400$^{\circ}C$ and sintered at 850∼1000$^{\circ}C$ using rapid thermal annealing(RTA) precess. The thickness of piezoelectric thick films were 10$\mu\textrm{m}$. PAN-PZT thick film on Ag-Pd/SiO$_2$/Si prepared at 900$^{\circ}C$/1300sec had remanent polarization of 19.70 ${\mu}$C/$\textrm{cm}^2$.

  • PDF

Fabrication and Characterizations of Thick PZT Films for Micro Piezoelectric Devices (마이크로 압전 소자용 후막 PZT의 제조 및 물성 평가)

  • 박준식;박광범;윤대원;박효덕;강성군;최태훈;이낙규;나경환
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.569-574
    • /
    • 2002
  • Recently, thick PZT films are required for the cases of micro piezoelectric devices with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Microstructures, and electrical properties of films were investigated by XRD, FESEM, impedance analyzer, and P-E hysteresis. PZT films with 2.7$mu extrm{m}$ to 4.4${\mu}{\textrm}{m}$ thickness were fabricated. Dielectric constant, loss, remnant polarization and coercive field of them were 880~1650 at 1kHz, 2~3% at 1kHz, 26~32 $\mu$C/$ extrm{cm}^2$, and 33~60kV/cm, respectively. Also a transverse piezoelectric coefficient $(e_{31,f})$ measurement system was fabricated and tested for thick film samples.

Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method (Screen Printing법을 이용한 압전 후막의 제조 및 특성연구)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF

Transverse Piezoelectric Coefficient ($e_{31,f}$) of Thick PZT films Fabricated by Sol-Gel Method with Thicknesses, Electrode Shapes and Poling Process (Sol-Gel 법으로 제조된 후막 PZT의 두께, 전극형상 및 분극 공정에 따른 $e_{31,f}$ 특성)

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kim, Sung-Hyun;Kang, Sung-Goon;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1326-1331
    • /
    • 2003
  • Thick PZT films are required for the cases of micro actuators and sensors with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Total 8 types of samples using thick PZT films with thicknesses, about $1{\mu}m$ and $2{\mu}m$, and Pt top electrodes shapes for measuring transverse piezoelectric coefficient ($e_{31,f}$) were fabricated using MEMS processes. They were characterized by fabricated e31,f measurement system before and after poling. $e_{31,f}$ values of samples after poling were higher than before poling. Those of $2{\mu}m$ thick PZT films were also higher than $1{\mu}m$ thick PZT films. And those with long electrodes as top electrodes were also higher than shorter.

  • PDF

Tunable Properties of Ferroelectric Thick Films With MgO Added on (BaSr)TiO3

  • Kim, In-Sung;Song, Jae-Sung;Jeong, Soon-Jong;Jeon, So-Hyun;Chung, Jun-Ki;Kim, Won-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.391-395
    • /
    • 2007
  • MgO enhanced $(Ba_{0.6}Sr_{0.4})$ $TiO_3$ thick films have been fabricated by a tape casting and firing method for tunable devices on the microwave frequency band. In order to improve ferroelectric properties, the composite thick films enhanced with MgO on BST have been asymmetrically annealed by a focused halogen beam method. Dielectric constants of composite thick films are changed from 1050 to 1300 at 100 kHz after 60 s and 150 s annealing by the focused halogen beam. Even though no prominent changes were previously observed from the thick films before and after annealing in terms of chemical composition and surface morphology, it is clear that the average particle size of the thick films calculated by Scherrer's formula were increased by annealing. Furthermore, a strong correlation between particle size and dielectric constant of the composite thick films has been observed; dielectric constant increases with increased particle size. This has been attributed to the increased volume of ferroelectric domain due to increased particle sizes. As a result, the tuning range was improved by halogen beam annealing.

Preparation of Low-Temperature Fired PZT Thick Films on Si by Screen Printing

  • Cheon, Chae-Il;Lee, Bong-Yeon;Kim, Jeong-Seog;Bang, Kyu-Seok;Kim, Jun-Chul;Lee, Hyeung-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.20-23
    • /
    • 2003
  • Piezoelectric powder with the composition of PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3/)O$_3$ and small particle size of 0.3 $\mu\textrm{m}$ was investigated for low-temperature firing of PZT thick films. PbTiO$_3$-PbZrO$_3$-Pb(Mn$\_$1/3/Nb$\_$2/3)O$_3$ ceramics showed dense microstructure and superior piezoelectric properties, electromechanical coupling factor (k$\_$p/) of 0.501 and piezoelectric constant (d$\_$33/) of 224. The PZT paste was made of the powder and organic vehicles, and screen-printed on Pt(450nm)/YSZ(110nm)/SiO$_2$(300nm)/Si substrates and fired at 800∼900$^{\circ}C$. Any interface reaction between the PZT thick film and the bottom electrode was not observed in the PZT thick films. The PZT thick film fired at 800$^{\circ}C$ showed moderate electrical properties, the remanent polarization(p$\_$r/) of 16.0 ${\mu}$C/$\textrm{cm}^2$, the coercive field(E$\_$c/) of 36.7 ㎸/cm, and dielectric constant ($\varepsilon$$\_$r/) of 531. Low-temperature sinterable piezoelectric composition and high activity of fine particles reduced the sintering temperature of the thick film. This PZT thick film could be utilized for piezoelectric microactuators or microsensors that require Si micromachining technology.

Fabrication of High-Performance Piezoelectric Thick Films on Si for a Micropump of the Ink-jet Printer Head

  • Kim, Jong-Min;Park, Hyeong-Sik;Kim, Jwa-Yeon;Yun, Eui-Jung;Kim, Jeong-Seog;Cheon, Chae-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • The piezoelectric thick films were fabricated on silicon substrates by screen printing method. By developing a low-temperature sinterable piezoelectric composition and a new poling technique, we fabricated the high-performance piezoelectric thick films on silicon which can be applied for piezoelectric MEMS applications such as micropumps of the ink jet printer heads.

  • PDF

Characterization of Piezoelectric Thin Films (압전박막의 특성평가)

  • 김동국;변금효;김일두;이치헌;박정호;최광표;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.916-919
    • /
    • 2000
  • A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. The main idea of this research is to provide a distinctive solution for the measurement of both the longitudinal and the transverse piezoelectric d-coefficients, d$\sub$33/ and d$\sub$3l/, of ferroelectric thin films and also thick films. In general, to get these two coefficients of thin films, two different measuring systems are required. Here, we propose the improved method for the evaluation of these two coefficients with single equipment and with the relatively convenient procedure. The two-step loading process of applying the both positive and the negative pressure has been designed to acquire the piezoelectric coefficients. These results have beer calibrated for both the longitudinal and the transverse piezoelectric d-coefficients, d$\sub$33/ and d$\sub$31/, of thin films. In the first stage of the experiments, we have obtained d$\sub$33/ of 108pC/N and d$\sub$31/ of 57pC/N for the PZT thin films.

  • PDF

Measurement of Effective Transverse Piezoelectric Coefficients $(e_{31,f})$ of Fabricated Thick PZT Films on $SiN_x/Si$ Substrates ($SiN_x/Si$ 기판에 제조된 후막 PZT의 횡 압전 계수 $(e_{31,f})$ 측정)

  • Jeon, Chang-Seong;Park, Joon-Shik;Lee, Sang-Yeol;Kang, Sung-Goon;Lee, Nak-Kyu;Ha, Kyoang-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.965-968
    • /
    • 2004
  • Effective transverse Piezoelectric Coefficients $(e_{31,f})$ of thick PZT $(Pb(Zr_{0.52}Ti{0.48}Ti_{0.48})O_3)$ films on $SiN_x/Si$ substrates were measured with PZT thicknesses and top electrode dimensions. $e_{31,f}$ is one of important Parameters characterizing Piezoelectricity of PZT films. Thick PZT films have been used as various sensors and actuators because of their high driving force and high breakdown voltage. Thick PZT films were fabricated on Pt/Ta/$SiN_x$/Si substrates using sol-gel method. Thicknesses of PZT films were $1{\mu}m$ and $1.8{\mu}m$. $|e_{31,f}|$ values of $1.8{\mu}m$-thick-PZT films were higher than those of $1{\mu}$-thick-PZT films. Maximum $|e_{31,f}|$ of $1.8{\mu}$-thick-PZT films was about $50^{\circ}C/m^2$.

  • PDF

Fabrication and Characterization of Multi-layered Thick Films by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사 공정을 이용한 다층 박막 소재의 제조 및 전기적 특성)

  • Ryu, Jung-Ho;Ahn, Cheol-Woo;Kim, Jong-Woo;Choi, Jong-Jin;Yoon, Woon-Ha;Hahn, Byung-Dong;Choi, Joon-Hwan;Park, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.584-592
    • /
    • 2012
  • Room temperature powder spray in vacuum process, so called Aerosol deposition (AD) is a room temperature (RT) process to fabricate thick and dense ceramic films, based on collision of solid ceramic particles. This technique can provide crack-free dense thin and thick films with thicknesses ranging from sub micrometer to several hundred micrometers with very fast deposition rates at RT. In addition, this technique is using solid particles to form the ceramic films at RT, thus there is few limitation of the substrate and easy to control the compositions of the films. In this article, we review the progress made in synthesis of piezoelectric thin/thick films, multi-layer structures, NTC thermistor thin/thick films, oxide electrode thin films for actuators or sensor applications by AD at Korea Institute of Materials Science (KIMS) during the last 4 years.