• Title/Summary/Keyword: Piezoelectric sensors

Search Result 391, Processing Time 0.024 seconds

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

A Brief Review on Piezoelectrics-Based Paint Sensors (압전 기반 페인트 센서 기술 동향)

  • Hyoung-Su Han;Trang An Duong;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.433-441
    • /
    • 2023
  • Piezoelectric ceramics play an important role in electrical and electronic devices such as sensors, actuators, and microelectronic devices. However, traditional ceramics are difficult to be used in various process industries due to their high brittleness and low flexibility. Therefore, piezoelectric paint sensors have been designed for application to the curved surfaces of complicated structures. Furthermore, recently, significant attention has been focused on the development of paint sensors that can be used as structure health monitoring sensors for vibration, impact, and acoustic emission. Several studies have successfully demonstrated the possibility that smart paint sensors can take the place of traditional ceramic sensors. In this review, we briefly introduce the concept of the piezoelectric paint sensors and the expected application field as well as their preparation and history.

Piezoelectric Sensitivity Analysis for Vibration Control of a Plate (평판의 진동제어를 위한 압전감도 해석)

  • Hwang, Jin-Kwon;Song, Chul-Ki;Choi, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2000
  • This paper investigates optimal locations of piezoelectric actuators and sensors on a thin plate. To locate actuators and sensors properly is important in controlling modal vibrations well. A piezoelectric sensitivity index is introduced to select optimal locations for vibration control of each mode. The sensitivity expresses the efficiency of actuating and sensing modal forces according to locations of a piezoelectric material on a plate. The piezoelectric sensitivities for two types of plate, an all-clamped plate, and a free-free plate, are derived theoretically and are verified experimentally. Also, its usefulness Is experimentally shown to control vibration of the all-clamped plate with piezoelectric materials.

  • PDF

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.

Examining the qualification of copper magnetic nanocatalyst design and its application in piezoelectric sensor

  • Yufeng Pang;Xiaojuan Li
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.743-753
    • /
    • 2023
  • Piezoelectricity is defined as the ability of certain materials to produce electric signals when mechanically stressed or to deform when an electrical potential is applied. Piezo technology is becoming increasingly crucial as intelligent devices use vibration sensors to detect vibrations in consumer electronics, the automotive industry, architectural design, and other applications. A wide range of applications is now possible with piezoelectric sensors, such as skin-attachable devices that monitor health and detect diseases. In this article, copper nanoparticles are used in the piezoelectric sensor as the driving agent of the magnetic field. Magnetic nanocatalysts containing copper nanoparticles are used due to their cheapness and availability. Considering that the increase of the electric field acting on the piezoelectric increases the damping (As a result, damping materials reduce radiation noise and increase material transfer losses by altering the natural vibration frequency of the vibrating surface). Among the advantages of this method are depreciating a significant amount of input energy using high energy absorption capacity and controlling slight vibrations in the sensors.

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan;Noh, Hyuk-Chun;Kim, Sun-Hoon;Han, In-Seon
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.477-501
    • /
    • 2005
  • In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

An automatic calibration technique for piezoelectric pressure sensors (압전형 압력센서의 교정기법 자동화)

  • Choi, Ju-Ho;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.357-362
    • /
    • 1997
  • This paper suggests an automatic calibration technique for piezoelectric low pressure transducer measuring a pressure blow 500psi. The present calibration system embedded with error correction algorithm generates it's best you don't cut parts of wards like so dynamic pressure and compensates offset voltage and pressure error. It is shown via experimental results that the instrumentation accuracy has been improved and mean time between calibrations has been shortened.

  • PDF

3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites (PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서)

  • Kim, Jeong Hyeon;Kim, Hyunseung;Jeong, Chang Kyu;Lee, Han Eol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

A Study on the Characteristics of PCN-PZT Piezoelectric Acceleration Sensor (PCN-PZT 압전형 가속도센서의 특성에 관한 연구)

  • Kim, Yeong-Deok;Kim, Gwang-Il;Jeong, U-Cheol;Go, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.354-360
    • /
    • 1999
  • PCN-PZT piezoelectric acceleration sensors of annular shear mode voltage type were fabricated and their characteristics have been investigated. Field tests are also carried out. To avoid noise problems from the environmental conditions, acceleration sensors employed solid state micro-electronics for pre-amplifier. The calibration procedures based on the principle of the comparison method were adopted for investigating the characteristics of fabricated acceleration sensors. The voltage sensitivity and resonant frequency of fabricated acceleration sensors were 83mv/g, 23kHz, respectively. The lower and upper frequency limit were 4Hz and 9kHz, respectively. The variation of the voltage sensitivity showed 10% at $-406{\circ}C\; and\; 9%\; at\; 121^{\circ}C$ compared to that of reference temperature at $40^{\circ}C$.

  • PDF

Estimation using PZT for Vibration of Plates (압전소자를 이용한 판의 진동평가)

  • Kim, Ie-Sung;Park, Kang-Geun;Kim, Wha-Jung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.35-41
    • /
    • 2006
  • Various monitoring sensors have been used for the monitoring, damage and vibration prediction of structures. They have been used for sensing damage in a variety of materials and structures such as piezoelectric materials (PZT) and electric strain gauges. But, many experiments of vibration were not performed. The PZT changes physical force if load cell to electrical signal due to deformation of structure. The voltage change of piezoelectric sensors for plates are used for vibration prediction. In this study, a fundamental study for vibration prediction using piezoelectric sensors are discussed in plates.

  • PDF