• 제목/요약/키워드: Piezoelectric material

검색결과 1,412건 처리시간 0.029초

COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션 (Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics)

  • 곽민섭;황건태
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

Second-order statistics of natural frequencies of smart laminated composite plates with random material properties

  • Singh, B.N.;Umrao, Atul;Shukla, K.K.;Vyas, N.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.19-34
    • /
    • 2008
  • Nowadays developments in the field of laminated composite structures with piezoelectric have attracted significant attention of researchers due to their wide range of applications in engineering such as sensors, actuators, vibration suppression, shape control, noise attenuation and precision positioning. Due to large number of parameters associated with its manufacturing and fabrication, composite structures with piezoelectric display a considerable amount of uncertainty in their material properties. The present work investigates the effect of the uncertainty on the free vibration response of piezoelectric laminated composite plate. The lamina material properties have been modeled as independent random variables for accurate prediction of the system behavior. System equations have been derived using higher order shear deformation theory. A finite element method in conjunction with Monte Carlo simulation is employed to obtain the secondorder statistics of the natural frequencies. Typical results are presented for all edges simply supported piezoelectric laminated composite plates to show the influence of scattering in material properties on the second order statistics of the natural frequencies. The results have been compared with those available in literature.

균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구 (Transient Response of Functionally Graded Piezoelectric Ceramic with Crack)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.21-27
    • /
    • 2003
  • 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 면외전단 충격(anti-plane shear impact)을 받는 기능경사 압전 세라믹(functionally graded piezoelectric ceramic)의 중앙에 존재하는 균열(central crack)의 동적 응답에 대해 연구한다. 기능경사 압전재료의 물성치(material property)는 두께방향을 따라 연속적으로 변한다고 가정한다. 라플라스 변환(Laplace transform)과 푸리에 변환(Fourier transform)을 사용하여 두 쌍의 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equations of the second kind)으로 표현한다. 재료 물성치의 변화도(gradient of material properties)와 전기하중(electric loading)의 영향을 보기 위해 동응력세기계수(dynamic stress intensity factor)에 대한 수치 결과를 제시하였다.

집적화에 적합한 진동형 AlN 압전 마이크로 발전기의 설계와 해석 (Design and analysis of AlN piezoelectric micro generators suitable with integration)

  • 이병철;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.239-239
    • /
    • 2010
  • This paper describes the design and analysis of AlN piezoelectric micro generator. The generator was designed to convert ambient vibration energy to electrical power as a AlN piezoelectric material compatible with integataion process. From the simulation results, the resonance frequency of designed model is about 360 Hz and analyzed the bending mode, displacement and expectation output.

  • PDF

Quartz를 이용한 마이크로스트립 안테나의 주파수 특성에 관한 연구 (Frequency Agile Properties of Microstrip Antenna Using Quartz)

  • 하용만;오승재;우형관;송준태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.488-491
    • /
    • 2001
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the microstrip antenna using the piezoelectric substrate. The microstrip patch antenna made of Quartz substrate was designed and fabricated by Ensemble v 7.0 simulator. The experimental problem was compensated by Ensemble v 7.0

  • PDF

저온소결 세라믹을 이용한 밴더형 적층 액츄에이터의 제작 (Bending Mode Multilayer Actuator Using Low Temperature Sintering Piezoelectric Ceramics)

  • 이주영;김상종;강종윤;김현재;이상렬;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.68-69
    • /
    • 2005
  • Low temperature ($\leq900^{\circ}C$) sintering piezoelectric ceramics $0.01Pb(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3-0.35PbTiO_3-0.23PbZrO_3+0.1wt%Y_2O_3+xwt%ZnO$ $(0{\leq}x{\leq}2.5)$ have been developed and investigated. The electromechanical coupling coefficient ($k_p$), piezoelectric constant ($d_{33}$), and mechanical quality factor ($Q_m$) have been measured to characterize the piezoelectric materials system. When 2.0 wt% ZnO is added, the properties of the system, $d_{33}$ = 559 pC/N, $k_p$ = 55.0 % and $Q_m$ = 73.4 are obtained which are very suitable for piezoelectric actuators. A bending mode multilayer actuator has been also developed using the materials which size is $27(L)\times9(W)\times1.07(t)mm^3$. The actuators are fabricated by multilayer ceramic (MLC) process and consist of24 layers and each layer thickness is $35{\mu}m$. At this time, the displacement of actuator was $100{\mu}m$ at 28V.

  • PDF

공기 매질에 의한 압전 세라믹스의 분극효과 (Poling Effect on Piezoeletric Ceramics for Air Medium)

  • 김용혁
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.464-470
    • /
    • 2010
  • A new method for the poling of piezoelectric ceramics with an air insulation medium in stead of silicon oil is described. A similar variation of electromechanical coupling coefficient $K_t$, for an air medium is observed in comparison to that of the material poled by the conventional poling method using a silicon oil medium. Different poling parameters such as dielectric constant $\varepsilon^T$ and frequency deviation ${\Delta}f$ are studied as well as the influence on the aging effect. The required poling factors to achieve the optimal piezoelectric characteristics are electric field, 2 kV/mm, temperature $100^{\circ}C$, and poling time 30 Min. From this result electric field 3 kV/mm atmosphere airs there being will be able to use with the polarization insulation medium about the piezoelectric material, confirmed.

공진법을 이용한 PMN-PT 단결정의 탄성, 유전, 압전상수 측정 (Measurement of all the Elastic, Dielectric and Piezoelectric Properties of PMN-PT Single Crystals)

  • 이상한;이수성;노용래;이호용;한진호
    • 한국전기전자재료학회논문지
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 2004
  • PMN-PT, a piezoelectric single crystal, has many useful applications such as sensors and actuators. In this paper, all the elastic, piezoelectric, and dielectric constants of the PMN-32%PT single crystals were measured by the resonance method. For the rhombohedral symmetry, a total of twelve independent material constants were measured such as six elastic compliance constants at constant electric field, two dielectric constants at constant stress, and four piezoelectric constants d. Seven sets of crystal samples of each different geometry were prepared for the measurement of length-thickness extensional, thickness extensional, radial, length extensional and thickness shear modes of vibration, respectively. In order to check the validity of the measurement, experimental impedance spectrum of the PMN-PT crystal was compared with numerical data spectrum calculated with the measured material constants. The good agreement between the two spectra confirmed validity of the results in this paper.

압전재료 내의 균열에 대한 그린함수 (Green's Function of Cracks in Piezoelectric Material)

  • 최성렬
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

압전재료와 점탄성 재료를 이용한 평판 진동 음장의 능동제어 (Active Control of Sound Fields from Vibrating Plates Using Piezoelectric and Viscoelastic Material)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.950-955
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been tarried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by Passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.