• Title/Summary/Keyword: Piezoelectric layer

Search Result 353, Processing Time 0.027 seconds

Fabrication of AlN Thin Film by Reactive RF Magnetron Sputtering and Sensing Characteristics of Oil Pressure (반응성 RF 마그네트론 스퍼터링에 의한 AlN 박막 제조 및 유압 감지 특성)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Hong, Yeon-Woo;Lee, Young-Jin;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.815-819
    • /
    • 2014
  • Aluminum nitride (AlN) thin film and TiN film as a buffer layer were deposited on INCONEL 600 substrate by reactive RF magnetron sputtering at room temperature(R.T.) under 25~75% $N_2/Ar$ atmosphere. The as-deposited AlN films at 25~50% $N_2/Ar$ showed a polycrystalline phase of hexagonal AlN, and an amorphous phase. The peak of AlN (002) plane, which was determinant on a performance of piezoelectric transducer, became strong with increasing the $N_2/Ar$ ratio. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. The piezoelectric sensing properties of AlN module were performed using pressure-voltage measurement system. The output signal voltage of AlN module showed a linear behavior between 20~80 mV in 1~10 MPa range, and the pressure-sensing sensitivity was calculated as 3.6 mV/MPa.

3차원 LTCC 기판을 이용한 압전 압력 센서의 제작 및 연구 특성

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Lee, Gyeong-Cheon;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.118-118
    • /
    • 2009
  • Low temperature co-fired ceramic (LTCC) is one of promising materials for MEMS structures because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of 400 um were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of $Pb(ZrTi)O_3$ (PZT) thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The results showed that the fabrication method is very suitable for pressure sensor applications. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

Electro-Fluid-Structural Interaction Simulation of a Valveless Micropump (시뮬레이션을 통한 무밸브 마이크로 펌프의 전기-유체-구조 상호작용에 대한 연구)

  • Li, Guang-Zhe;Goo, Nam-Seo;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • In this paper, the pumping performance of a piezoelectric valveless micropump is simulated with a commercial finite element analysis software, COMSOL Multiphysics. The micropump developed in the previous work is composed of a 4-layer lightweight piezo-composite actuator (LIPCA), a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, structural domain and fluid domain are coupled in the simulation. Water flow rates are numerically predicted for geometric parameters of the micropump. Based on this study, the micropump is optimally designed to obtain its highest pumping performance.

Design and Fabrication of a 3 Chopstick Gripper for Microparts (미세 물체 조작을 위한 3젓가락형 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1067-1071
    • /
    • 1997
  • A new type of gripper for micrometer-size objects is developed using piezoelectric multi-layer benders. It is composed of three chopsticks, two of which are designed to grip micro-objects. The third one is reserved for helping the two when objects are released from the chopsticks. It is well known that a micro object is much easier to grasp than to release it after holding it. The electrostatic force between the chopsticks and an object is believed to be the main cause of adhesion in a dry environment. The surface tension becomes very important when liquids are present or in a liquid. The third auxiliary chopsticks is introduced to solve there surface effects. All the three chopsticks are made of tungsten wires with sharpened ends by etching. When grasping microparts, the two chopsticks are utilized, and, when releasing them anywhere the parts are located, the third one reduces the electrostatic force between the objects and the chopstick may be to help the other two chopsticks to hold an objects in a desired orientation. We constructed the three chopstick gripoer for micro objects and test their function by holding and releasing an object of a diameter of 100 micrometers. We make use of open loop voltage control. The bender displacement resolution is sub-micrometer. The gripping forces, about tens of mN are obtained. The experiment shows that the third auxiliary chopstick functions effectively.

  • PDF

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

Development and Evaluation of the piezoelectric transducer for the transit-time ultrasonic flowmeters (외접형 초음파 유량센서용 압전 트랜스듀서의 개발 및 평가)

  • Lee Young-Jin;Im Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.30-34
    • /
    • 2006
  • To enhance the performance of the piezoelectric transducer for the transit-time type ultrasonic sensors, we investigated and verified the effect of it's size and raw materials using FEM(Finite Element Method) technique. Radiation angle of $25^{\circ}$ could be realized through the control of the matching layer's shape and its raw materials. Based on the results, the flowmeter is fabricated and characterized in real application, which thereby proves good sensitivity of 10 times better than current commercial one.

Design and Fabrication of a Convex Array Ultrasonic Transducer with Finite Element Analysis (유한요소 해석법을 이용한 컨벡스 배열형 초음파 탐촉자의 설계 및 제작)

  • Lee, Su-Sung;Kwon, Jae-Hwa;Eun, Hong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.592-599
    • /
    • 2002
  • In this study, an ultrasonic transducer was designed with a commercial finite element analysis (FEA) code, PZFlex, and fabricated based on the design. The transducer has the dimension and shape suitable for abdomen diagnosis working at 5 ㎒ and consists of 128 piezoelectric elements disposed in a convex linear array form. The transducer is composed of two impedance matching layers, one backing layer, and kerfs placed between the piezoelectric elements. Validity of the design with the FEA was illustrated through experimental characterization of a sample transducer. Comparison with the design results by equivalent circuit analysis method was also made to check the superiority of the FEA design.

Electrical properties of Low Fired Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$ Ceramics (저온에서 소결한 Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$세라믹스의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.652-659
    • /
    • 1996
  • Sintering characteristics and electrical properties of xPb(Mg$_{1}$8/Te$_{1}$8/Mn$_{1}$4/Nb$_{1}$2/) $O_{3}$-(1-x) Pb (Zr$_{1}$2/ $Ti_{1}$2/) $O_{3}$ (x=0.075, 0.1, 0.125) ceramics are investigated. A sintering temperature of ceramics could be reduced to 950.deg. C by a reaction between PbO and B site compound material. The physical properties of 0.1Pb(Mg, Te, Mn, Nb) $O_{3}$ - 0.9Pb(Zr, Ti) $O_{3}$ bulk ceramic with 3wt% glass frit(0.857PbO-0.143W $O_{3}$) were following : den = 7.95 g/cm$^{3}$, T$_{c}$=340.deg. C, .epsilon.$_{33}$= 754, k$_{31}$=0.3 and Q.=1780. The 3-layer piezoelectric transformer by using a tape casting method showed a good monolithic structure, and its voltage setup ratio was 2.5 times higher than that of a single device by using bulk ceramics.s.s.

  • PDF

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

Evaluation on the Performance of Power Generation and Vibration Characteristics of Energy Harvesting Block Structures for Urban & Housing Application (도시·주택 적용 에너지수확 블록구조의 진동 특성 및 발전성능 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3735-3740
    • /
    • 2012
  • In this paper, the performance of power generation for the energy harvesting block with a combination of piezoelectric technology and electromagnetic technology among various energy harvesting technologies was investigated. The goal of this study is to evaluate on the applicability of our developed energy harvesting block into the field of urban & housing. First, we carried out a finite element vibration analysis and evaluated the performance of power generation for the multi-layer energy harvester at laboratory scale. Second, we described the features of our developed prototype module that includes amplification technologies to improve power density per module and evaluated the performance of power generation for the energy harvesting block in a variety of ways. Finally, we suggested the direction for the improvement of the energy harvesting block module.