• 제목/요약/키워드: Piezoelectric fiber

검색결과 143건 처리시간 0.028초

압전섬유복합재 외팔보 에너지 회수장치의 출력전압 최대화 (Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites)

  • 김선명;김철
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.805-812
    • /
    • 2011
  • 손가락형 전극과 압전섬유/에폭시 복합재료(MFC) 압전패치가 분포된 알루미늄 외팔보형의 에너지 회수장치를 설계하여 전기-기계적 특성을 연구하였다. 최대 전력을 얻기 위해서 보와 외부 가진이 공진주파수에서 진동하도록 하였다. ANSYS를 사용하여 해석기법을 개발했으며, 방법의 타당성 검증을 위해서 결과를 실험과 비교하였으며, 두 결과는 잘 일치하였다. 개발된 해석기법을 사용하여 PZT, PVDF, MFC 압전체에 의한 발생전압의 차이를 계산했으며, 압전체의 위치, 보의 치수가 성능에 미치는 영향을 연구하였다. 또한 MFC에 의한 최대 전압발생을 위해서 보의 치수에 대한 최적화가 수행되었으며, 그 결과 최적화된 보에서 1차고유진동수 24.5Hz에서 40.1V의 전압이 발생했으며 이 값은 PZT의 결과와 비슷하다. 그러나 압전섬유형 회수장치는 PZT보다 더 높은 내구수명이 기대되어 유리하다.

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

간접 충격을 이용한 압전 방식 진동형 에너지 하베스터 (Piezoelectric Vibration Energy Harvester Using Indirect Impact)

  • 주선아;지창현
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1499-1507
    • /
    • 2017
  • This paper presents an impact-based piezoelectric vibration energy harvester using a freely movable metal sphere and a piezoceramic fiber-based MFC (Macro Fiber Composite) as piezoelectric cantilever. The free motion of the metal sphere, which impacts both ends of the cavity in an aluminum housing, generates power across a cantilever-type MFC beam in response to low frequency vibration such as human-body-induced motion. Impacting force of the spherical proof mass is transformed into the vibration of the piezoelectric cantilever indirectly via the aluminum housing. A proof-of-concept energy harvesting device has been fabricated and tested. Effect of the indirect impact-based system has been tested and compared with the direct impact-based counterpart. Maximum peak-to-peak open circuit voltage of 39.8V and average power of $598.9{\mu}W$ have been obtained at 3g acceleration at 18Hz. Long-term reliability of the fabricated device has been verified by cyclic testing. For the improvement of output performance and reliability, various devices have been tested and compared. Using device fabricated with anodized aluminum housing, maximum peak-to-peak open-circuit voltage of 34.4V and average power of $372.8{\mu}W$ have been obtained at 3g excitation at 20Hz. In terms of reliability, housing with 0.5mm-thick steel plate and anodized aluminum gave improved results with reduced power reduction during initial phase of the cyclic testing.

능동 섬유 복합재의 직접적 수치 모사 (Direct Numerical Simulation of Active Fiber Composite)

  • 백승훈;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.5-9
    • /
    • 2003
  • Stress and deflection of Active Fiber Composite(AFC) embedded and/or attached composite structures are numerically investigated at the constituent level by the Direct Numerical Simulation(DNS). The DNS approach which models and simulates the fiber and matrix directly using 3D finite elements need to be solved by efficient way. To handle this large scale problem, parallel program for solving piezoelectric behavior was developed and run on the parallel computing environment. Also, the stress result from DNS approach is compared with that from uniform field model.

  • PDF

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi;Chen, Min;Zhao, Guo-Zhong;Wang, Zhan-Xi;Schmidt, Rudiger;Qin, Xian-Sheng
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.633-641
    • /
    • 2017
  • The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

색분산 보상을 위한 선형 첩 광섬유 격자의 Apodization (Apodization of Linearly Chirped Fiber Gratings for Dispersion Compensation)

  • 박제형;최선민;한영근;김상혁;이상배
    • 한국광학회지
    • /
    • 제15권3호
    • /
    • pp.214-221
    • /
    • 2004
  • 색분산 보상에 사용되는 선형 첩 광섬유 격자의 제작에 있어서 Group Delay Ripple(GDR)을 줄이기 위한 apodization 기술에 대해 이론적으로 분석하고 실험적으로 규명하고자 한다. 첩격자의 제작에는 위상 마스크를 이용한 UV 빔 스캐닝 기법을 적용하였고, PZT(Piezoelectric transducer)를 이용하여 위상 마스크를 빔 스캐닝 중에 적절하게 흔들어줌으로써 apodization이 일어나도록 하였다. 이러한 모든 과정이 컴퓨터 제어로 이루어지기 때문에 다양한 apodization 프로파일을 적용할 수 있었다. Gaussian, Raised-cosine, Blackman, 그리고 Hyperbolic tangent 등의 프로파일을 적용하여 첩격자를 제작하였으며 실험 결과 0.05 nm 구간평균 peak-to-peak GDR이 20ps 이하로 감소하였다.

SSHI 기법을 이용한 압전소자로부터의 에너지 회수에 대한 연구 (A Study on the Piezoelectric Energy Harvesting Using SSHI Technique)

  • 남윤수;박종수;박해균;이재강
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.92-98
    • /
    • 2008
  • The target of this paper is to study on the usefulness of the SSHI technique as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. A mechanical motion vibrator supplies piezoelectric material with mechanical energy. An optical fiber sensor and a pulse generating circuit are used to accomplish the parallel-SSHI technique. As a result of this study, energy harvesting using SSHI technique results in a significant increase of the electrical power flow.