• 제목/요약/키워드: Piezoelectric composite

검색결과 406건 처리시간 0.023초

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • 제10권2호
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

압전적층판의 비선형 열압전탄성 거동에서의 스냅-스루 현상 (Snap-through Phenomena on Nonlinear Thermopeizoelastic Behavior of Piezolaminated Plates)

  • 오일권;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.232-237
    • /
    • 2000
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are numerically investigated by applying a cylindrical arc-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von-Karman strain-displacement relationships, nonlinear finite element formulations are derived for thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopiezoelastic behavior and vibration characteristics are studied for symmetric and eccentric structural models with various piezoelectric actuation modes. Present results show the possibility to enhance the performance of thermal structures using piezoelectric actuators and report new phenomena, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection of piezolaminated plates.

  • PDF

복합소재를 이용한 에너지 하베스팅 기술 동향 (Recent Trends in Energy Harvesting Technology Using Composite Materials)

  • 정재환;이동민;김영준;김상우
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.110-121
    • /
    • 2019
  • Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

Two collinear Mode-I cracks in piezoelectric/piezomagnetic materials

  • Zhou, Zhen-Gong;Wang, Jia-Zhi;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.55-75
    • /
    • 2008
  • In this paper, the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a uniform tension loading was investigated by the generalized Almansi's theorem. Through the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations, in which the unknown variables were the jumps of displacements across the crack surfaces. To solve the triple integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials to obtain the relations among the electric displacement intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The interaction of two collinear cracks was also discussed in the present paper.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Theoretical analyses for a 2-2 cement-based piezoelectric curved composite with electrode layers

  • Zhang, Taotao
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.961-980
    • /
    • 2014
  • Based on the general theory of elasticity, the static behavior of 2-2 cement-based piezoelectric curved composites is investigated. The actuator consists of 2 cement layers and 1 piezoelectric layer. Considering the electrode layer between the cement layer and the piezoelectric layer as the elastic layer, the exact solutions of the mechanical and electrical fields of the curved composites are obtained by utilizing the Airy stress function method. Furthermore, the theoretical results are compared with the FEM results and good agreements (with almost no error) are obtained, thus proving the validity of this study. Furthermore, the influence of certain parameters is discussed, which can help to get the desired displacements and stresses. Finally, it is seen that the analytical model established in this paper works well, which could benefit the design of this kind of cement-based smart devices.

A penny-shaped interfacial crack between piezoelectric layer and elastic half-space

  • Ren, J.H.;Li, Y.S.;Wang, W.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.1-17
    • /
    • 2014
  • An interfacial penny-shaped crack between piezoelectric layer and elastic half-space subjected to mechanical and electric loads is investigated. Using Hankel transform technique, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The stress intensity factor and energy release rate are determined. Numerical results reveal the effects of electric loadings and material parameters of composite on crack propagation and growth. The results seem useful for design of the piezoelectric composite structures and devices of high performance.

O-3형 PZT/PVDF 복합재료의 압전특성에 관한 연구 (A study on the piezoelectric properties with PZT/PVDF composites of O-3 connectivity)

  • 최용;김용혁;김호기;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.254-256
    • /
    • 1987
  • In this study, piezoelectric composite materials of O-3 connectivity were made by, mixing FZT ceramics with polymers, the dependence of volume % PZT and poling condition for dielectric and piezoelectric properties were investigated. The measured value of dielectric constant was dependent on the volume % PZT, which was exponentially increased with volume %PZT. Piezoelectric coefficient ($\bar{d}_{33}$) was exponentially increased with volume % PZT. Voltage coefficient ($\bar{g}_{33}$) was decreased with volume % PZT, but it was larger than that of single phase PZT ($\bar{g}_{33}$) because the dielectric constant ($\bar{\varepsilon}_{33}$) of composite materials was decreased.

  • PDF

PZT/Epoxy (1-3형) 복합재료의 두께변화에 따른 압전특성 (Piezoelectric Properties on the Thickness of Specimens with PZT/Epoxy Composite Materials of 1-3 Connectivity)

  • 김용혁;김호기;김진수;이덕출
    • 한국세라믹학회지
    • /
    • 제25권1호
    • /
    • pp.7-14
    • /
    • 1988
  • In this paper, piezoelectric composite materials of 1-3 connectivity were prepared by using "dicing-filling" technique with PZT ceramics and epoxy polymers, and the dependence of piezoelectric properties on the thickness of specimens was investigated. In case that the PZT volume percent is 18.1%, according to an increment of thickness, the dielectric constant of composites( 33) is unchangeable, which is about 200, the piezoelectric coefficient (d33) is somewhat increased, which is about 240-280 (PC/N) and the electromechanical coupling factor of thickness mode(kt) is proportioned, but radial mode(kp) is constant.

  • PDF