DOI QR코드

DOI QR Code

A penny-shaped interfacial crack between piezoelectric layer and elastic half-space

  • Ren, J.H. (College of Mechanical and Electrical Engineering, Hebei University of Engineering) ;
  • Li, Y.S. (College of Mechanical and Electrical Engineering, Hebei University of Engineering) ;
  • Wang, W. (College of Mechanical and Electrical Engineering, Hebei University of Engineering)
  • Received : 2013.01.01
  • Accepted : 2014.04.28
  • Published : 2014.10.10

Abstract

An interfacial penny-shaped crack between piezoelectric layer and elastic half-space subjected to mechanical and electric loads is investigated. Using Hankel transform technique, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The stress intensity factor and energy release rate are determined. Numerical results reveal the effects of electric loadings and material parameters of composite on crack propagation and growth. The results seem useful for design of the piezoelectric composite structures and devices of high performance.

Keywords

References

  1. Chen, W.Q. and Shioya, T. (2000), "Complete and exact solutions of a penny-shaped crack in a piezoelectric solid: antisymmetric shear loadings", Int. J. Solids Struct., 37, 2603-2619. https://doi.org/10.1016/S0020-7683(99)00113-4
  2. Feng, W.J., Li, Y.S. and Ren, D.L. (2006), "Transient response of a piezoelectric layer with a penny-shaped crack under electrical-mechanical impacts", Struct. Eng. Mech., 23, 163-176. https://doi.org/10.12989/sem.2006.23.2.163
  3. Karapetian, E., Sevotianov, I. and Kachanov, M. (2000), "Penny-shaped and half-plane cracks in a transversely isotropic piezoelectric solid under arbitrary loading", Arch. Appl. Mech., 70, 201-229. https://doi.org/10.1007/s004199900060
  4. Kassir, M.K. and Sih, G.C. (1975), Three-Dimensional Crack Problems, Noordhoff International Publications, Leyden.
  5. Kogan, L., Hui, C.Y. and Molkov, V. (1996), "Stress and induction field of a spherical inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material", Int. J. Solids Struct., 33, 2719-2737. https://doi.org/10.1016/0020-7683(95)00182-4
  6. Kuna, M. (2010), "Fracture mechanics of piezoelectric materials-where are we right now?", Eng. Fract. Mech., 77, 309-326. https://doi.org/10.1016/j.engfracmech.2009.03.016
  7. Li, X.F. and Lee, K.Y. (2004), "Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer", J. Mech. Phys. Solid., 52, 2079-2100. https://doi.org/10.1016/j.jmps.2004.02.012
  8. Shang, F., Kuna, M. and Abendroth, M. (2003), "Finite element analyses of three-dimensional crack problems in piezoelectric structures", Eng. Fract. Mech., 70, 143-160. https://doi.org/10.1016/S0013-7944(02)00039-5
  9. Shen, S.P. and Kuang, Z.B. (1998), "Wave scattering from an interface crack in laminated anisotropic media", Mech. Res. Commun., 25, 509-517. https://doi.org/10.1016/S0093-6413(98)00067-6
  10. Tian, W.Y. and Rajapakse, R.K.N.D. (2006), "Fracture parameters of a penny-shaped crack at the interface of a piezoelectric bi-material system", Int. J. Fract., 141, 37-48. https://doi.org/10.1007/s10704-006-7634-8
  11. Ueda, S. (2008), "Functionally graded piezoelectric strip with a penny-shaped crack under electromechanical loadings", Eur. J. Mech. A/Solid., 27, 50-60. https://doi.org/10.1016/j.euromechsol.2007.04.003
  12. Ueda, S. and Ashida, F. (2007), "Transient response of a functionally graded piezoelectric strip with a penny-shaped crack under electric time-dependent loading", Acta Mech., 194, 175-190. https://doi.org/10.1007/s00707-007-0463-7
  13. Wang, B.L., Noda N., Han, J.C. and Du, S.Y. (2001), "A penny-shaped crack in a transversely isotropic piezoelectric layer", Eur. J. Mech. A/Solid, 20, 997-1005. https://doi.org/10.1016/S0997-7538(01)01164-0
  14. Wang, B.L., Sun, Y.G. and Zhu, Y. (2011), "Fracture of a finite piezoelectric layer with a penny-shaped crack", Int. J. Fract., 172, 19-39. https://doi.org/10.1007/s10704-011-9643-5
  15. Wang, Z.K. (1994), "Penny-shaped crack in transversely isotropic piezoelectric materials", Acta. Mech. Sin., 10, 49-60. https://doi.org/10.1007/BF02487657
  16. Yang, F.Q. (2004), "General solutions of a penny-shaped crack in a piezoelectric material under opening mode-I loading", Q. J. Mech. Appl. Math., 57, 529-550. https://doi.org/10.1093/qjmam/57.4.529
  17. Yang, J.H. and Lee, K.Y. (2003a), "Penny-shaped crack in a piezoelectric cylinder under electromechanical loads", Arch. Appl. Mech., 73, 323-336. https://doi.org/10.1007/s00419-002-00245-6
  18. Yang, J.H. and Lee, K.Y. (2003b), "Penny-shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in plane mechanical and electrical loads", Int. J. Solids Struct., 40, 573-590. https://doi.org/10.1016/S0020-7683(02)00620-0
  19. Zhang, T.Y. and Gao, C.F. (2004), "Fracture behaviors of piezoelectric materials", Theor. Appl. Fract. Mech., 41, 339-379. https://doi.org/10.1016/j.tafmec.2003.11.019
  20. Zhang, T.Y., Zhao, M.H. and Tong, P. (2002), "Fracture of piezoelectric ceramics", Adv. Appl. Mech., 38, 147-289. https://doi.org/10.1016/S0065-2156(02)80104-1

Cited by

  1. Thermal stresses in a non-homogeneous orthotropic infinite cylinder vol.59, pp.5, 2016, https://doi.org/10.12989/sem.2016.59.5.841
  2. Mode III SIFs for interface cracks in an FGM coating-substrate system vol.64, pp.1, 2014, https://doi.org/10.12989/sem.2017.64.1.071