• Title/Summary/Keyword: Piezoelectric composite

Search Result 406, Processing Time 0.022 seconds

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel 7sing Piezoeleetric Thin Film Sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF (polyvinylidene fluoride) film sensors are used for monitoring impact damage in Gr/Ep composite panels. Both PVDF film sensors and strain gages are attached to the surface of Gr/Ep specimens. A series of impact tests at various impact energy by changing impact mass the height are performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as indentation, matrix cracking, and delamination, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

Design of a Piezocomposite Generating Element and Its Characteristics (압전-복합재료 발전 소자의 설계 및 특성)

  • Tien, Minh Tri;Kim, Jong-Hwa;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.867-872
    • /
    • 2010
  • Unused energy derived from sources in nature can be captured and stored for future use, for example, to recharge a battery or power a device; this process of capturing and storing energy is called energy harvesting. Extensive investigations are being carried out in order to use piezoelectricity to harvest the energy generated by body movements or machine vibrations. This paper presents a simple analytical model that describes the output voltage effectiveness of a Piezocomposite Generating Element (PCGE) from vibration and its experimental verification. PCGE is composed of carbon/epoxy, PZT, and glass/epoxy layers. During the manufacturing process, the stacked layers were cured at $177^{\circ}C$ in an autoclave, which created residual stresses in PCGE and altered the piezoelectric properties of the PZT layer. In the experiments, three kinds of lay-up configurations of PCGE were considered to verify the proposed prediction model and to investigate its capability to convert oscillatory mechanical energy into electrical energy. The predicted performance results are in good agreement with observed experimental ones.

Proposal of Equation on Changable Performance Stroke (Δ h) and Radius of Curvature (ρ) According to the CERP Ply Orientation in PZTCA (CFRP 배향각에 따라 변화하는 PZTCA의 작동변위(Δ h)와 곡률반경(ρ)의 관계식 제안)

  • Hong Jung-Hwa;Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.318-327
    • /
    • 2006
  • Due to the diversified use of recent Piezoelectric Zirconate Titanate Composite Actuate. (PZTCA), various PZTCAs with the different ply orientation of the fiber layer have been applied. For this reason, the applicable bending moment equation is necessary even though the fiber layer ply orientation and the laminate configuration are changed. The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bernoulli-Euler bending moment (M) when the ply orientations of UD CFRP are changed. In conclusions, firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $(M^E)$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $(M^E)$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

Vibration Control of a Beam with a Tip Mass using a Lightweight Piezo-composite Actuator (경량 압전 복합재료 작동기를 이용한 끝단 질량이 부착된 보의 진동 제어)

  • Martua, Landong;Park, Hoon-Cheol;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.218-224
    • /
    • 2007
  • Although piezoelectric materials such as PZT have been widely used as actuators in the field of active vibration suppression, the use of bare PZT as an actuator may cause some drawbacks such as critical breaks in the installation process, short circuits in the host material and low fatigue performance. The LIPCA-C2 (lightweight piezocomposite actuator) was developed to alleviate these problems. We implemented the LIPCA as an actuator to suppress the vibration of an aluminum cantilever beam with a tip mass. In our test, we used positive position feedback control algorithm. The filter frequency for this type of feedback should be tuned to the natural frequency of the target mode. The first three experimental natural frequencies of the aluminum cantilever beam agree well with the results of finite element analysis. The effectiveness of using the LIPCA as an actuator in active vibration suppression was investigated with respect to the time and frequency domains, and the experimental results show that LIPCAs with PPF control can significantly reduce the amplitude of forced vibrations and the settling time of free vibrations. For a case study, the forced vibration control of several beams with different thicknesses were performed.

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

Comparison of Nondestructive Damage Sensitivity of Single Fiber/Epoxy Composites Using Ceramic PZT and Polymeric PVDF Sensors By Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 세라믹 PZT 및 고분자 PVDF 센서에 따른 단섬유 강화 에폭시 복합재료의 비파괴 손상감지능 비교)

  • Jung Jin-Kyu;Kim Dae-Sik;Park Joung-Man;Yoon Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride­trifluoroethylene) (P(VDF-TrFE)) copolymer have been used as a sensor. The advantages of polymer sensor are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. Polymer sensor can be directly embedded in a structure. In this study, nondestructive damage sensitivity of single basalt fiber/epoxy composites was investigated with sensor type and thermal damage using AE and oscilloscope. And AE waveform for epoxy matrix with various damage types was compared to each other. The damage sensitivity of two polymer sensors was rather lower than that of PZT sensor. The damage sensitivity of PVDF sensor did not decrease until thermal damage temperature at $80^{\circ}C$ and they decreased significantly at $110^{\circ}C$ However, the damage sensitivity of P(VDF-TrFE) sensor at $110^{\circ}C$ was almost same in no damage sensor. For both top and side impacts, the difference in arrival time increased with increasing internal and surface damage density of epoxy matrix.

  • PDF

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond (상온접합 본딩이 있는 복합재 날개의 저온 구조시험)

  • Ha, Jae Seok;Park, Chan Yik;Lee, Kee Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.928-935
    • /
    • 2015
  • This paper presents low temperature structural tests of a UAV wing which has room temperature-curing adhesive bond. The wing structure is made of carbon fiber reinforced composites, and the skins are bonded to the inner structures (such as ribs and spars) using room temperature-curing adhesive bond. Also, to verify damage tolerance design of the wing structure, barely visible impact damages are intentionally created in the critical areas. The attachment fittings of the wing are fixed in a specially designed chamber which can simulate the low temperature environments of the operating altitudes. The test load is applied by hydraulic actuators which are placed outside the chamber. The structural tests consist of strain survey tests and a durability test for 1-life fatigue load spectrum. During the tests, strains of major parts are measured by strain gauges and FBG sensors. The change of the initial impact damages is also monitored using piezoelectric sensors. The 1-life damage tolerance of the composite structure is verified by the structural tests under the simulated environments.

Studies on magneto-electro-elastic cantilever beam under thermal environment

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.205-217
    • /
    • 2012
  • A smart beam made of magneto-electro-elastic (MEE) material having piezoelectric phase and piezomagnetic phase, shows the coupling between magnetic, electric, thermal and mechanical under thermal environment. Product properties such as pyroelectric and pyromagnetic are generated in this MEE material under thermal environment. Recently studies have been published on the product properties (pyroelectric and pyromagnetic) for magneto-electro-thermo-elastic smart composite. Hence, the magneto-electro-elastic beam with different volume fractions, investigated under uniform temperature rise is the main aim of this paper, to study the influence of product properties on clamped-free boundary condition, using finite element procedures. The finite element beam is modeled using eight node 3D brick element with five nodal degrees of freedom viz. displacements in the x, y and z directions and electric and magnetic potentials. It is found that a significant increase in electric potential observed at volume fraction of $BaTiO_3$, $v_f$ = 0.2 due to pyroelectric effect. In-contrast, the displacements and stresses are not much affected.